Answer:
The answer is C
Hope this helps!
Mark me brainliest if I'm right ;)
Answer:
1. x = -4y ---> y = (-1/4)x
slope = -1/4. y-intercept = (0,0)
2. y = -2x + 4
3. y = (1/3)x - 1
Step-by-step explanation:
1. Re-write your equation so that x is on the right and y is on the left:
x = -4y ---> y = (-1/4)x
slope = -1/4. y-intercept = (0,0)
2. y-intercept = (0,4) ----> P1
x-intercrpt = (2,0) ----> P2
slope m = (y2 - y1) / (x2 - x1)
= (0 - 4)/(2 - 0)
= -2
therefore, y - y1 = mx - x1 ---> y - 4 = -2x
or y = -2x + 4
3. y-intercept = (0,-1)
x-intercept = (3,0)
m = (0 - (-1)) / (3 -0) = 1/3
y - (-1) = (1/3)x - 0 ---> y = (1/3)x - 1
as a fraction of 180, m < 1 = 1/ (1 + 3 + 2) * 180 = 1/6 * 180 = 30 degrees
m < 2 = 3*30 = 90 degrees
and m < 3 = 30*2 = 60 degrees
Answer:
6.18% of the class has an exam score of A- or higher.
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:

What percentage of the class has an exam score of A- or higher (defined as at least 90)?
This is 1 subtracted by the pvalue of Z when X = 90. So



has a pvalue of 0.9382
1 - 0.9382 = 0.0618
6.18% of the class has an exam score of A- or higher.