Answer:
a) 4/25, or 0.16, or 16%
b) 1/5, or 0.2, or 20%
c) The first option - the theoretical and experimental values should become closer the more trials that are performed.
Step-by-step explanation:
a) 4 of Tammy's 25 spins landed on black, so the experimental probability is 4/25, or 0.16, or 16%.
b) The spinner is split into 5 equal sections. Assuming it is fair, the chance of landing in any given section for a single spin is 1/5, or 0.2, or 20%.
c) The theoretical and experimental values should get closers the more trials you do.
For example, consider 1 coin flip vs 100. The theoretical probability of landing on a given side of a coin is 1/2, or 0.5, or 50%. With a single flip, your experimental probability will either be 0% or 100%, both off of the theoretical probability by 50%. After 100 flips however, the experimental and theoretical probabilities will be much closer to each other.
Answer:
huh????
Step-by-step explanation:
Answer:
B
Step-by-step explanation:
The answer is ''B'' cause it is the only true statement
Y = mx + b
M= your slope or rise over run
B = your y-intercept
For example if the rise was 5 and the run is 6, the equation would say
y = 5/6 + b
The / being your fraction bar
The y-intercept is where your line crosses the y-axis
So say that the line crosses the y-axis at 10
y = 5/6 + 10
That about sums it all up!