Let's solve this problem step-by-step.
−3(1−2x)=3x+3(x−3)+6
Step 1: Simplify both sides of the equation.
−3(1−2x)=3x+3(x−3)+6
(−3)(1)+(−3)(−2x)=3x+(3)(x)+(3)(−3)+6(Distribute)
−3+6x=3x+3x+−9+6
6x−3=(3x+3x)+(−9+6)(Combine Like Terms)
6x−3=6x+−3
6x−3=6x−3
Step 2: Subtract 6x from both sides.
6x−3−6x=6x−3−6x
−3=−3
Step 3: Add 3 to both sides.
−3+3=−3+3
0=0
So, 0=0 or all real numbers.
<span>△RST is a right triangle because RS¯¯ is perpendicular to RT¯¯ .</span>
14 is the answer for this one
Answer:
Step-by-step explanation:
x-intercept → Plug in 0 for <em>y</em><em> </em>to get −3 for <em>x</em>
y-intercept → When <em>x</em><em> </em>is set equal to 0 [(0, −6)]
I am joyous to assist you anytime.
The point-slope form:

We have the point (-3, -1) and the slope m = 3/5. Substitute:

Answer:
point-slope form: y + 1 = 3/5(x + 3)
slope-intercept form: y = 3/5x + 4/5
standard form: 3x - 5y = -4