P(P then C)=(7/10)(3/12)
P(PthenC)=21/120
P(PthenC)=7/40
Answer:
<em>g(</em><em>x)</em><em> </em><em>=</em><em> </em><em>-4g(</em><em>x)</em><em> </em><em>=</em><em> </em><em>-x+</em><em>4</em>
<em>=</em><em> </em><em>g(</em><em>5</em><em>)</em><em> </em><em>=</em><em> </em><em>-</em><em>4</em><em>(</em><em>5</em><em>)</em><em> </em><em>=</em><em> </em><em>-</em><em>(</em><em>5</em><em>)</em><em>+</em><em>4</em>
<em>=</em><em> </em><em>g(</em><em>5</em><em>)</em><em> </em><em>=</em><em> </em><em>-</em><em>2</em><em>0</em><em> </em><em>=</em><em> </em><em>-</em><em>1</em>
Answer:
π2,√80,12
Step-by-step explanation:
π2= 6.28
√80= about 8
12=12
Hope I could help!
Answer:
4. Player 2's position is Player 1's position reflected across the y-axis; only the signs of the x-coordinates of Player 1 and Player 2 are different.
Step-by-step explanation:
Player 1's position is (-3, 5).
It means that it is 3 units left from the origin and 5 units above the origin.
Player 2's position is (3, 5).
It means that it is 3 units right from the origin and 5 units above the origin.
Hence, the two points are on the same horizontal line bisected by the y-axis.
So, Player 2's position is Player 1's position reflected across the y-axis; only the signs of the x-coordinates of Player 1 and Player 2 are different.