Ammonia isn't an element, it's a compound made by mixing the elements Nitrogen and Hydrogen in the Haber process. Therefore, it isn't on the periodic table
Moles of CO₂ = mass / molecular weight
Moles of CO₂ = 4.4 / (12 + 16 x 2)
Moles of CO₂ = 0.1 mol
Each mole of gas occupies 22.4 L at STP. Therefore,
Moles of NH₃ = 5.6 / 22.4
Moles of NH₃ = 0.25 mol
The concentrations : 0.15 M
pH=11.21
<h3>Further explanation</h3>
The ionization of ammonia in water :
NH₃+H₂O⇒NH₄OH
NH₃+H₂O⇒NH₄⁺ + OH⁻
The concentrations of all species present in the solution = 0.15 M
Kb=1.8 x 10⁻⁵
M=0.15
![\tt [OH^-]=\sqrt{Kb.M}\\\\(OH^-]=\sqrt{1.8\times 10^{-5}\times 0.15}\\\\(OH^-]=\sqrt{2.7\times 10^{-6}}=1.64\times 10^{-3}](https://tex.z-dn.net/?f=%5Ctt%20%5BOH%5E-%5D%3D%5Csqrt%7BKb.M%7D%5C%5C%5C%5C%28OH%5E-%5D%3D%5Csqrt%7B1.8%5Ctimes%2010%5E%7B-5%7D%5Ctimes%200.15%7D%5C%5C%5C%5C%28OH%5E-%5D%3D%5Csqrt%7B2.7%5Ctimes%2010%5E%7B-6%7D%7D%3D1.64%5Ctimes%2010%5E%7B-3%7D)
![\tt pOH=-log[OH^-]\\\\pOH=3-log~1.64=2.79\\\\pH=14-2.79=11.21](https://tex.z-dn.net/?f=%5Ctt%20pOH%3D-log%5BOH%5E-%5D%5C%5C%5C%5CpOH%3D3-log~1.64%3D2.79%5C%5C%5C%5CpH%3D14-2.79%3D11.21)
Answer:
O, N, C, H
Explanation:
Electronegativity of an element is the property that combines the ability of its atom to lose or gain electrons. It measures the relative tendency with which the atoms of the element attracts valence electrons in a chemical bond.
On the periodic table, Electronegativity increases across the period but decreases down a group.
To solve the given problem, let us use thE Pauling's table of electronegativities to compare the electronegativities of the elements.
On the table:
C = 2.5
H = 2.1
O = 3.5
N = 3.0
In terms of decreasing electronegativities, the atoms are arranged as:
O N C H