Answer:
3
Step-by-step explanation:
6/2=3
Answer:
179.5 - 180.5
Step-by-step explanation:
Time is a continuous variable. The minimum sleep time per night per subject here, is given as 1 minute.
Larger sleep times could be 1.08 minutes, 2.99 minutes, and other continuous/infinite values. Remember there are 60seconds in a minute and in-between seconds, there are milliseconds. So time is a continuous variable.
In this case though, our measurement of time is given in whole number units (integers). Our precision of measurement is 1 unit. We have an observed value of 180 minutes (the first subject's sleep time). The real limits of this value are 179.5 to 180.5
Answer: 15 !
Step-by-step explanation:
14 17/21 can be re-written as 14.8095
Which rounds to 15.
Hope this helped! :)
Answer:
And we can find this probability with this difference:
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Let X the random variable that represent the amount of cofee shops of a population, and for this case we know the distribution for X is given by:
Where
and
We are interested on this probability
And the best way to solve this problem is using the normal standard distribution and the z score given by:
If we apply this formula to our probability we got this:
And we can find this probability with this difference:
Answer:
- r(0) = <0, 100> . . . . . . . .meters
- r'(0) = <7.071, 7.071> . . . . meters per second
Step-by-step explanation:
<u>Initial Position</u>
The problem statement tells us we're measuring position from the ground at the base of the building where the projectile was launched. The initial horizontal position is presumed to be zero. The initial vertical position is said to be 100 meters from the ground, so (in meters) ...
r(0) = <0, 100>
<u>Initial Velocity</u>
The velocity vector resolves into components in the horizontal direction and the vertical direction. For angle α from the horizontal, the horizontal component of velocity is v₁·cos(α), and the vertical component is v₁·sin(α). For v₁ = 10 m/s and α = π/4, the initial velocity vector (in m/s) is ...
r'(0) = <10·cos(π/4), 10·sin(π/4)>
r'(0) ≈ <7.071, 7.071>