We know that
Applying the law of sines
step 1
Find the value of angle B
a=13
b=14
A=19°
so 

°
step 2
with angle A and angle B find the angle C
A+B+C=180-----> solve for C
C=180-(A+B)------> C=180-(19+20.5)-----> C=140.5°
step 3
 the answer isthe value of c is 25.4
the answer isthe value of c is 25.4
 
        
        
        
Answer:
A) The value of a is <u>29</u>.
B) The value of b is <u>greater than 29</u>.
C) In both part A and part B we have used a common property  which is addition property and that we have add 9 on both side of equation in both parts.
D) The value of a in part A is equal to 29 whereas in part B the value of b is greater than 29.
Step-by-step explanation:
Solving for Part A.
Given,

We have to solve for a.

By using addition property of equality, we will add both side by 9;

Hence the value of a is <u>29</u>.
Solving for Part B.
Given,

We have to solve for b.

By using addition property of inequality, we will add both side by 9;

Hence the value of b is <u>greater than 29</u>.
Solving for Part C.
In both part A and part B we have used a common property  which is addition property and that we have add 9 on both side of equation in both parts.
Solving for Part D.
The value of a in part A is equal to 29 whereas in part B the value of b is greater than 29.
 
        
             
        
        
        
It is always isosceles because it can be proved as follows:
The perpendicular bisector dissects the triangle into two, and it is the common side.  Then each side of the bisector is 90 degrees, and the bisected to two equal sides, so the two dissected triangles are congruent, hence the original triangle is isosceles.
        
             
        
        
        
Answer:
The distance between the points is approximately 6.4
Step-by-step explanation:
The given coordinates of the points are;
(2, -2), and (6, 3)
The distance between two points, 'A', and 'B', on the coordinate plane given their coordinates, (x₁, y₁), and (x₂, y₂) can be found using following formula;

Substituting the known 'x', and 'y', values for the coordinates of the points, we have;

Therefore, the distance between the points, (2, -2), and (6, 3) = √(41) ≈ 6.4.