X² - 8x - 20 factors to give option
B) (x - 10)(x + 2)
x² + 8x - 20 factors to give option
A) (x - 2)(x + 10)
x² - x - 20 factors to give option C) (x - 5)(x + 4)
and x² - 9x - 20 is option D) Prime.
I hope this helps!
The unit rate for that equation is .33
Step-by-step explanation:
<h2>
<em><u>3</u></em><em><u>x</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>1</u></em><em><u>0</u></em><em><u> </u></em><em><u>≤</u></em><em><u> </u></em><em><u>3</u></em><em><u>0</u></em><em><u> </u></em></h2><h2>
<em><u>3</u></em><em><u>x</u></em><em><u> </u></em><em><u>≤</u></em><em><u> </u></em><em><u>3</u></em><em><u>0</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>1</u></em><em><u>0</u></em><em><u> </u></em></h2><h2>
<em><u>3</u></em><em><u>x</u></em><em><u> </u></em><em><u>≤</u></em><em><u> </u></em><em><u>2</u></em><em><u>0</u></em></h2><h2>
<em><u>x </u></em><em><u>≤</u></em><em><u> </u></em><em><u>2</u></em><em><u>0</u></em><em><u>/</u></em><em><u>3</u></em></h2>
Answer:
Absolute minimum = 1.414
Absolute maximum = 2.828
Step-by-step explanation:

For absolute minimum we take the minimum values of
and
.

Plugging in the minimum values in the function.

Absolute minimum value will be always positive.
∴ Absolute minimum = 1.414
For absolute maximum we take the maximum values of
and
.

Plugging in the maximum values in the function.

Absolute maximum value will be always positive.
∴ Absolute maximum = 2.828