Answer:
y = x + 5: x=y−5
2x + y = 17
: x=-1/2y+17/2
Step-by-step explanation:
I do not exactly know what you were asking but I just answered the questions, if that is not what you were looking for tell me so I can try and edit my answer
<u>Given</u>:
The given equations are
and ![y=11-4 x](https://tex.z-dn.net/?f=y%3D11-4%20x)
We need to determine the pair of numbers that is a member to the system of equations.
<u>Pair of numbers:</u>
The pair of numbers can be determined by solving the system of equations.
Let us use the substitution method to solve the equations.
Substituting
in the equation
, we have;
![-6 x+4 (11-4x)=22](https://tex.z-dn.net/?f=-6%20x%2B4%20%2811-4x%29%3D22)
![44-22x=22](https://tex.z-dn.net/?f=44-22x%3D22)
![-22x=-22](https://tex.z-dn.net/?f=-22x%3D-22)
![x=1](https://tex.z-dn.net/?f=x%3D1)
Thus, the value of x is 1.
Substituting x = 1 in the equation
, we get;
![y=11-4(1)](https://tex.z-dn.net/?f=y%3D11-4%281%29)
![y=11-4](https://tex.z-dn.net/?f=y%3D11-4)
![y=7](https://tex.z-dn.net/?f=y%3D7)
Thus, the value of y is 7.
Hence, the pair of numbers that is a member of both the equations are (1,7)
Answer:It looks like there aren't many great matches for your search
Step-by-step explanation:
The answer is C. I hope this helps you.
Answer:
Volume = ![\frac{64}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B64%7D%7B3%7D)
Step-by-step explanation:
Given - Consider the solid S described below. The base of S is the triangular region with vertices (0, 0), (4, 0), and (0, 4). Cross-sections perpendicular to the x-axis are squares.
To find - Find the volume V of this solid.
Solution -
Given that,
The equation of the line with both x-intercept and y-intercept as 4 is -
![\frac{x}{4} + \frac{y}{4} = 1](https://tex.z-dn.net/?f=%5Cfrac%7Bx%7D%7B4%7D%20%2B%20%5Cfrac%7By%7D%7B4%7D%20%20%3D%201)
⇒x + y = 4
⇒y = 4 - x
Now,
Volume = ![\int\limits^a_b {A(x)} \, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7BA%28x%29%7D%20%5C%2C%20dx)
where
A(x) is the area of general cross-section.
It is given that,
Cross-sections perpendicular to the x-axis are squares.
So,
A(x) = (4 - x)²
As solid lies between x = 0 and x = 4
So,
The Volume becomes
Volume = ![\int\limits^4_0 {(4 - x)^{2} } \, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E4_0%20%7B%284%20-%20x%29%5E%7B2%7D%20%7D%20%5C%2C%20dx)
= ![\int\limits^4_0 {[(4)^{2} + (x)^{2} - 8x] } \, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E4_0%20%7B%5B%284%29%5E%7B2%7D%20%20%2B%20%28x%29%5E%7B2%7D%20-%208x%5D%20%7D%20%5C%2C%20dx)
= ![\int\limits^4_0 {[16 + x^{2} - 8x] } \, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E4_0%20%7B%5B16%20%20%2B%20x%5E%7B2%7D%20-%208x%5D%20%7D%20%5C%2C%20dx)
= ![{[16 x + \frac{x^{3}}{3} - \frac{8x^{2} }{2} ] } ^4_0](https://tex.z-dn.net/?f=%7B%5B16%20x%20%20%2B%20%5Cfrac%7Bx%5E%7B3%7D%7D%7B3%7D%20%20-%20%5Cfrac%7B8x%5E%7B2%7D%20%7D%7B2%7D%20%5D%20%7D%20%5E4_0)
= ![{[16(4 - 0) + \frac{4^{3}}{3} - \frac{0^{3}}{3} - 4 [4^{2} - 0^{2}] ] }](https://tex.z-dn.net/?f=%7B%5B16%284%20-%200%29%20%20%2B%20%5Cfrac%7B4%5E%7B3%7D%7D%7B3%7D%20-%20%5Cfrac%7B0%5E%7B3%7D%7D%7B3%7D%20%20-%204%20%5B4%5E%7B2%7D%20-%200%5E%7B2%7D%5D%20%20%20%5D%20%7D)
= ![{[16(4) + \frac{64}{3} - 0 - 4 [16 - 0] ] }](https://tex.z-dn.net/?f=%7B%5B16%284%29%20%20%2B%20%5Cfrac%7B64%7D%7B3%7D%20-%200%20%20-%204%20%5B16%20-%200%5D%20%20%20%5D%20%7D)
= ![{[64 + \frac{64}{3} - 64 ] }](https://tex.z-dn.net/?f=%7B%5B64%20%20%2B%20%5Cfrac%7B64%7D%7B3%7D%20%20-%2064%20%20%5D%20%7D)
= ![\frac{64}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B64%7D%7B3%7D)
⇒Volume = ![\frac{64}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B64%7D%7B3%7D)