Answer:
8 units
Explanation:
F=(k*q1*q2)/(r^2)
K is a constant, q1 is charge of 1, q2 is charge of 2, r is distance between the two.
The tension in the cord is 14.7 N and the force of pull of the cord is 14.7 N, assuming the block is stationary.
<h3>
What is the tension in the cord?</h3>
The tension in the cord is calculated as follows;
T = ma + mg
where;
- a is the acceleration of the block
- g is acceleration due to gravity
- m is mass of the block
T = m(a + g)
T = 1.5(a + 9.8)
T = 1.5a + 14.7
Thus, the tension in the cord is (1.5a + 14.7) N.
If the block is at rest, the tension is 14.7 N.
<h3>Force of the force</h3>
The force with which the cord pulls is equal to the tension in the cord
F = T = m(a + g)
F = (1.5a + 14.7) N
If the block is stationary, a = 0, the tension and force of pull of the cord = 14.7 N.
Thus, the tension in the cord is 14.7 N and the force of pull of the cord is 14.7 N, assuming the block is stationary.
Learn more about tension here: brainly.com/question/187404
#SPJ1
Answer:
2 m/s and -2 m/s
Explanation:
The object travels with an angle of
60.0°
with the positive direction of the y-axis: this means that it lies either in the 1st quadrant (positive x) or in the 2nd quadrant (negative x).
If it lies in the 1st quadrant, the value of vx (component of v along x direction) is:

If it lies in the 2nd quadrant, the value of vx (component of v along x direction) is:

I am a competitive figure skater. There are certain turns you can use such as a mowhawk, where you set one foot down that is facing the opposite direction from which you are gliding. There is a two foot turn, where you either go on or toes and turn backwards, or lean somewhat on your heals and turn forwards. Use your hips to help turn. And a 3 turn, which is basically a 2 foot turn on 1 foot. But remember, it takes practice, and you may fall a couple times.
The density is 4.76 gcm^-3
and if mass is in kg then density is equal to 4.76*10^-3