Net force = (mass) · (acceleration)
= (69 kg) · (29 m/s²)
= (69 · 29) · (kg·m/s²)
= 2,001 Newtons upward
(about 450 pounds)
Answer:
If all these three charges are positive with a magnitude of
each, the electric potential at the midpoint of segment
would be approximately
.
Explanation:
Convert the unit of the length of each side of this triangle to meters:
.
Distance between the midpoint of
and each of the three charges:
Let
denote Coulomb's constant (
.)
Electric potential due to the charge at
:
.
Electric potential due to the charge at
:
.
Electric potential due to the charge at
:
.
While forces are vectors, electric potentials are scalars. When more than one electric fields are superposed over one another, the resultant electric potential at some point would be the scalar sum of the electric potential at that position due to each of these fields.
Hence, the electric field at the midpoint of
due to all these three charges would be:
.
We can rearrange the mirror equation before plugging our values in.
1/p = 1/f - 1/q.
1/p = 1/10cm - 1/40cm
1/p = 4/40cm - 1/40cm = 3/40cm
40cm=3p <-- cross multiplication
13.33cm = p
Now that we have the value of p, we can plug it into the magnification equation.
M=-16/13.33=1.2
1.2=h'/8cm
9.6=h'
So the height of the image produced by the mirror is 9.6cm.