Answer:
2 acute and 1 right
Step-by-step explanation:
The sum of angles of a triangle is always 180°.
Right angles are 90°, and obtuse angles are more than 90°. If each of the angles in the triangle is more than 0°, there obviously cannot be two angles that measure 90° or more. Just the sum of those two would be 180° or more, and that sum doesn't include the third angle.
So, any triangle can have at most one angle that is 90° or more (right or obtuse). The remaining two angles must be acute for the sum of angles to be 180°.
2 acute and 1 right angle can form a triangle
Answer:
No
Step-by-step explanation:
Answer:
a = - 2, b = - 6
Step-by-step explanation:
Substitute the values of the zeros into the polynomial and equate to zero.
x² +(a + 1)x + b
x = - 2 → (- 2)² - 2(a + 1) + b = 0 , that is
4 - 2a - 2 + b = 0
2 - 2a + b = 0 ( subtract 2 from both sides )
- 2a + b = - 2 → (1)
x = 3 → 3² + 3(a + 1) + b = 0, that is
9 + 3a + 3 + b = 0
12 + 3a + b = 0 ( subtract 12 from both sides )
3a + b = - 12 → (2)
Subtract (1) from (2) term by term to eliminate b
5a = - 10 ( divide both sides by 5 )
a = - 2
Substitute a = - 2 into either of the 2 equations and evaluate for b
Substituting into (2)
3(- 2) + b = - 12
- 6 + b = - 12 ( add 6 to both sides )
b = - 6
Thus a = - 2 and b = - 6
rationalizing the numerator, or namely, "getting rid of that pesky radical at the top".
we simply multiply top and bottom by a value that will take out the radicand in the numerator.
![\bf \cfrac{\sqrt[3]{144x}}{\sqrt[3]{y}}~~ \begin{cases} 144=2\cdot 2\cdot 2\cdot 2\cdot 3\cdot 3\\ \qquad 2^3\cdot 18 \end{cases}\implies \cfrac{\sqrt[3]{2^3\cdot 18x}}{\sqrt[3]{y}}\implies \cfrac{2\sqrt[3]{ 18x}}{\sqrt[3]{y}} \\\\\\ \cfrac{2\sqrt[3]{ 18x}}{\sqrt[3]{y}}\cdot \cfrac{\sqrt[3]{(18x)^2}}{\sqrt[3]{(18x)^2}}\implies \cfrac{2\sqrt[3]{(18x)(18x)^2}}{\sqrt[3]{(y)(18x)^2}}\implies \cfrac{2\sqrt[3]{(18x)^3}}{\sqrt[3]{18^2x^2y}}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B%5Csqrt%5B3%5D%7B144x%7D%7D%7B%5Csqrt%5B3%5D%7By%7D%7D~~%0A%5Cbegin%7Bcases%7D%0A144%3D2%5Ccdot%202%5Ccdot%202%5Ccdot%202%5Ccdot%203%5Ccdot%203%5C%5C%0A%5Cqquad%202%5E3%5Ccdot%2018%0A%5Cend%7Bcases%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B3%5D%7B2%5E3%5Ccdot%20%2018x%7D%7D%7B%5Csqrt%5B3%5D%7By%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Csqrt%5B3%5D%7B%20%2018x%7D%7D%7B%5Csqrt%5B3%5D%7By%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B2%5Csqrt%5B3%5D%7B%20%2018x%7D%7D%7B%5Csqrt%5B3%5D%7By%7D%7D%5Ccdot%20%5Ccfrac%7B%5Csqrt%5B3%5D%7B%2818x%29%5E2%7D%7D%7B%5Csqrt%5B3%5D%7B%2818x%29%5E2%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Csqrt%5B3%5D%7B%2818x%29%2818x%29%5E2%7D%7D%7B%5Csqrt%5B3%5D%7B%28y%29%2818x%29%5E2%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Csqrt%5B3%5D%7B%2818x%29%5E3%7D%7D%7B%5Csqrt%5B3%5D%7B18%5E2x%5E2y%7D%7D)
![\bf \cfrac{2(18x)}{\sqrt[3]{324x^2y}}~~ \begin{cases} 324=2\cdot 2\cdot 3\cdot 3\cdot 3\cdot 3\\ \qquad 12\cdot 3^3 \end{cases}\implies \cfrac{36x}{\sqrt[3]{12\cdot 3^3x^2y}} \\\\\\ \cfrac{36x}{3\sqrt[3]{12x^2y}}\implies \cfrac{12x}{\sqrt[3]{12x^2y}}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B2%2818x%29%7D%7B%5Csqrt%5B3%5D%7B324x%5E2y%7D%7D~~%0A%5Cbegin%7Bcases%7D%0A324%3D2%5Ccdot%202%5Ccdot%203%5Ccdot%203%5Ccdot%203%5Ccdot%203%5C%5C%0A%5Cqquad%2012%5Ccdot%203%5E3%0A%5Cend%7Bcases%7D%5Cimplies%20%5Ccfrac%7B36x%7D%7B%5Csqrt%5B3%5D%7B12%5Ccdot%203%5E3x%5E2y%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B36x%7D%7B3%5Csqrt%5B3%5D%7B12x%5E2y%7D%7D%5Cimplies%20%5Ccfrac%7B12x%7D%7B%5Csqrt%5B3%5D%7B12x%5E2y%7D%7D)
13)
Relative max on (2)
Relative min on (-2)