We want to use a matrix to solve
-8x - 8y = -16
6x - 9y = -108
Before solving, simplify the equations as follows:
Divide the first equation by -8 to obtain
x + y = 2 (1)
Divide the second equation by 3 to obtain
2x - 3y = -36 (2)
In matrix form, the equations are
![\begin{bmatrix}1&1\\2&-3\end{bmatrix} \begin{\bmatrix} x\\y\end{bmatrix}=\begin{bmatrix}2 \\ -36 \end{bmatrix}](https://tex.z-dn.net/?f=%20%20%5Cbegin%7Bbmatrix%7D1%261%5C%5C2%26-3%5Cend%7Bbmatrix%7D%20%5Cbegin%7B%5Cbmatrix%7D%20x%5C%5Cy%5Cend%7Bbmatrix%7D%3D%5Cbegin%7Bbmatrix%7D2%20%5C%5C%20-36%20%5Cend%7Bbmatrix%7D)
The determinant of the matrix is
D = (1)(-3) - (1)(2) = -5
Use Cramer's Rule.
![x = \frac{1}{D} det(\begin{bmatrix}2&1\\-36&-3 \end{bmatrix} ) = \frac{1}{-5} (-6+36) = -6](https://tex.z-dn.net/?f=x%20%3D%20%20%5Cfrac%7B1%7D%7BD%7D%20det%28%5Cbegin%7Bbmatrix%7D2%261%5C%5C-36%26-3%20%5Cend%7Bbmatrix%7D%20%29%20%3D%20%20%5Cfrac%7B1%7D%7B-5%7D%20%28-6%2B36%29%20%3D%20-6)
Similalrly,
![y= \frac{1}{-5} det(\begin{bmatrix} 1&2\\2&-36\end{bmatrix} ) = \frac{1}{-5}(-36-4) =8](https://tex.z-dn.net/?f=y%3D%20%5Cfrac%7B1%7D%7B-5%7D%20det%28%5Cbegin%7Bbmatrix%7D%201%262%5C%5C2%26-36%5Cend%7Bbmatrix%7D%20%29%20%3D%20%5Cfrac%7B1%7D%7B-5%7D%28-36-4%29%20%3D8)
Answer: (-6, 8) or x = -6, y = 8
Answer:360+1=361
Step-by-step explanation:
Brainliest pls
hope it helps u..........
Answer:
The answer is A: y^2/2x
Step-by-step explanation:
Hope this helps please mark brainliest :)
AnsweI'm nauseous, I'm dyin'
(She ripped my heart right out)
Can't find her, someone to
(My eyes are all cried out)
Lost it, riots
Gunfire inside my head, I've
Lost it, riots
Gunfire inside my headr:
Step-by-step explanation: