4t=r
a=pir^2
sub 4t for r
a=pi(4t)^2
a=pi16t^2
a(t)=16pi(t^2)
A. a(t)=16pi(t^2)
B. sub 4 for t
a(4)=16pi4^2
a(4)=16pi16
a(4)=16*16*3.14
a(4)=803.84 square units
A. a(t)=16pi(t^2)
B. 803.84 square units
Answer:
2000
Step-by-step explanation:
100 x 120 = 12000
12000 divided by 6 = 2000
-4 would be the correct answer to the problem
Step-by-step explanation:
Collinear points have the same gradient
find the gradient(slope) between AB first

Find the one for BC

Find the gradient between AC now

YOUR LAST STATEMENT NOW WILL BE
POINTS A,B AND C ARE COLLINEAR SINCE THE GRADIENTS BETWEEN THEM IS THE SAME!!!
To solve this we are going to use the future value of annuity ordinary formula:
![FV=P[ \frac{(1+ \frac{r}{n} )^{kt} -1}{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3DP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%5E%7Bkt%7D%20-1%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
where

is the future value

is the periodic payment

is the interest rate in decimal form

is the number of times the interest is compounded per year

is the number of payments per year

is the number of years
We know for our problem that

and

. To convert the interest rate to decimal form, we are going to divide the rate by 100%:

Since the deposit is made semiannually, it is made 2 times per year, so

.
Since the type of the annuity is ordinary, payments are made at the end of each period, and we know that we have 2 periods, so

.
Lets replace the values in our formula:
![FV=P[ \frac{(1+ \frac{r}{n} )^{kt} -1}{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3DP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%5E%7Bkt%7D%20-1%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
![FV=6200[ \frac{(1+ \frac{0.06}{2} )^{(2)(5)} -1}{ \frac{0.06}{2} } ]](https://tex.z-dn.net/?f=FV%3D6200%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7B0.06%7D%7B2%7D%20%29%5E%7B%282%29%285%29%7D%20-1%7D%7B%20%5Cfrac%7B0.06%7D%7B2%7D%20%7D%20%5D)
We can conclude that the correct answer is <span>
$71,076.06</span>