Answer:
3 grams
Step-by-step explanation:
We are going to take the mass of a bunch of little strips below the triangle "roof." To do this, we must figure out what formula for the mass we'll use, in this case, we'll use:
Mass of strip = denisty * area = (1+x)*y*deltax grams
now, because the "roof" of the triangle contains two different integrals (it completely changes direction), we will use TWO integrals!
**pretend ∈ is the sum symbol
Mass of left part = lim x->0 ∈ (1+x)*y*deltax = inegral -1 to 0 of (1+x)*3*(x+1) = 3 * integral -1 to 0 of (x^2 + 2x + 1) = 3 * 1/3 = 1
Mass of left part = lim x->0 ∈ (1+x)*y*deltax = inegral 0 to 1 of (1+x)*3*(-x+1) = 3 * integral 0 to 1 of (-x^2 + 1) = 3 * 2/3 = 2
Total mass = mass left + mass right = 1 + 2 = 3 grams
Answer:
1
Step-by-step explanation:
First, we can find the equation of the parabola. The standard form of a parabola is ax^2 + bx + c,
where c is the y-intercept. The y-intercept on the graph is -5, and every option starts with x^2, so the equation must be x^2 - 5. This rules out options 3 and 4.
Next, we can find the equation of the line. The options are all given in slope-intercept form: y = mx + b, where b is the y-intercept. The y-intercept on the graph is 1, and option 1 has 1 in the place of b. Therefore, option 1 is the answer.
Answer:
5.8
Step-by-step explanation:
Using trig function Sin
2y + 2(y-2) = 5y - 3(y-10)
2y + 2y - 4 = 5y -3y +30
4y - 4 = 2y + 30
4y - 2y = 30 + 4
2y = 34
y = 34/2
y = 17