Answer:
Dimensions of the original rectangle:
Length = 19 cm
Width = 11 cm
Step-by-step explanation:
Let
Length = x
Width = y
Original rectangle:
2(Length + width) = 60
2x + 2y = 60
New rectangle has same length with original rectangle but half of the width of the original rectangle when folded
Length = x
Width = 1/2y
2(Length + 1/2width) = 49
2x + y = 49
2x + 2y = 60 (1)
2x + y = 49 (2)
Subtract (2) from (1) to eliminate x
2y - y = 60 - 49
y = 11
Substitute y = 11 into (2)
2x + y = 49
2x + 11 = 49
2x = 49 - 11
2x = 38
x = 38/2
x = 19
Dimensions of the original rectangle:
Length = 19 cm
Width = 11 cm
Answer:
--- ---
| -5 -2 |
| 4 12 |
--- ----
Step-by-step explanation:
A matrix can only be added to (or subtracted from) another matrix if the two matrices have the same dimensions . To add two matrices, just add the corresponding entries, and place this sum in the corresponding position in the matrix which results.
Answer:

Step-by-step explanation:
The volume of the solid revolution is expressed as;

Given y = 2x²
y² = (2x²)²
y² = 4x⁴
Substitute into the formula
![V = \int\limits^2_0 {4\pi x^4} \, dx\\V =4\pi \int\limits^2_0 { x^4} \, dx\\V = 4 \pi [\frac{x^5}{5} ]\\](https://tex.z-dn.net/?f=V%20%3D%20%5Cint%5Climits%5E2_0%20%7B4%5Cpi%20x%5E4%7D%20%5C%2C%20dx%5C%5CV%20%3D4%5Cpi%20%5Cint%5Climits%5E2_0%20%7B%20x%5E4%7D%20%5C%2C%20dx%5C%5CV%20%3D%204%20%5Cpi%20%5B%5Cfrac%7Bx%5E5%7D%7B5%7D%20%5D%5C%5C)
Substituting the limits
![V = 4 \pi ([\frac{2^5}{5}] - [\frac{0^5}{5}])\\V = 4 \pi ([\frac{32}{5}] - 0)\\V = 128 \pi/5 units^3](https://tex.z-dn.net/?f=V%20%3D%204%20%5Cpi%20%28%5B%5Cfrac%7B2%5E5%7D%7B5%7D%5D%20-%20%5B%5Cfrac%7B0%5E5%7D%7B5%7D%5D%29%5C%5CV%20%3D%204%20%5Cpi%20%28%5B%5Cfrac%7B32%7D%7B5%7D%5D%20-%200%29%5C%5CV%20%3D%20128%20%5Cpi%2F5%20units%5E3)
Hence the volume of the solid is 
Answer:
x = -2 and x = 5/4
Step-by-step explanation:
The image below shows step-by-step on how to solve it.
Hope this helps! :)