Answer:
Option (b) is correct.
The expression is equivalent, but the term is not completely factored.
Step-by-step explanation:
edge 2020
How do linear, quadratic, and exponential functions compare?
Answer:
How can all the solutions to an equation in two variables be represented?
<u><em>The solution to a system of linear equations in two variables is any ordered pair x,y which satisfies each equation independently. U can Graph, solutions are points at which the lines intersect.</em></u>
<u><em /></u>
<u><em>How can all the solutions to an equation in two variables be represented?</em></u>
<u><em>you can solve it by Iterative method and Newton Raphson's method.</em></u>
<u><em /></u>
<u><em>How are solutions to a system of nonlinear equations found?
</em></u>
Solve the linear equation for one variable.
Substitute the value of the variable into the nonlinear equation.
Solve the nonlinear equation for the variable.
Substitute the solution(s) into either equation to solve for the other variable.
<u><em>
</em></u>
<u><em>How can solutions to a system of nonlinear equations be approximated? U can find the solutions to a system of nonlinear equations by finding the points of intersection. The points of intersection give us an x value and a y value. Using the example system of nonlinear equations, let's look at how u can find approximate solutions.</em></u>
F(x)=x-5
f(4)=x-5
f(4)=4-5
f(4)=-1
<span>The correct answer is 216x</span>⁶<span>y</span>⁵<span>.
Explanation:
The first thing we do is raise the last monomial to the third power.
(4xy)(2x</span>²<span>y)(3xy)</span>³
<span>=(4xy)(2x</span>²<span>y)(3</span>³<span>x</span>³<span>y</span>³<span>)
=4xy(2x</span>²<span>y)(27x</span>³<span>y</span>³<span>).
Now we can multiply the first two monomials. When we multiply powers with the same base, we add the exponents:
8x</span>³<span>y</span>²<span>(27x</span>³<span>y</span>³<span>).
We multiply these last two monomials, again adding the exponents:
216x</span>⁶<span>y</span>⁵<span>.</span>