Answer:
I got -2.7
Step-by-step explanation:
Answer:
b I do believe
Step-by-step explanation:
can you help me
Answer:
Measure of angle 2 and angle 4 is 42°.
Step-by-step explanation:
From the figure attached,
m∠ABC = 42°
m(∠ABD) = 90°
m(∠ABD) = m(∠ABC) + m(∠DBC)
90° = 43° + m(∠DBC)
m(∠DBC) = 90 - 43 = 47°
Since ∠ABC ≅ ∠4 [Vertical angles]
m∠ABC = m∠4 = 42°
Since, m∠3 + m∠4 = 90° [Complimentary angles]
m∠3 + 42° = 90°
m∠3 = 90° - 42°
= 48°
Since, ∠5 ≅ ∠3 [Vertical angles]
m∠5 = m∠3 = 48°
m∠3 + m∠2 = 90° [given that m∠2 + m∠3 = 90°]
m∠2 + 48° = 90°
m∠2 = 90 - 48 = 42°
m∠3+ m∠4 = 90° [Since, ∠3 and ∠4 are the complimentary angles]
48° + m∠4 = 90°
m∠4 = 90 - 48 = 42°
Therefore, ∠2 and ∠4 measure 42°.
Answer:

Step-by-step explanation:
We are factoring

So:
((2•5^2x^2) + 485x) - 150
Pull like factors :
50x^2 + 485x - 150 = 5 • (10x^2 + 97x - 30)
Factor
10x^2 + 97x - 30
Step-1: Multiply the coefficient of the first term by the constant 10 • -30 = -300
Step-2: Find two factors of -300 whose sum equals the coefficient of the middle term, which is 97.
-300 + 1 = -299
-150 + 2 = -148
-100 + 3 = -97
-75 + 4 = -71
-60 + 5 = -55
-50 + 6 = -44
-30 + 10 = -20
-25 + 12 = -13
-20 + 15 = -5
-15 + 20 = 5
-12 + 25 = 13
-10 + 30 = 20
-6 + 50 = 44
-5 + 60 = 55
-4 + 75 = 71
-3 + 100 = 97
Step-3: Rewrite the polynomial splitting the middle term using the two factors found in step 2 above, -3 and 100
10x^2 - 3x + 100x - 30
Step-4: Add up the first 2 terms, pulling out like factors:
x • (10x-3)
Add up the last 2 terms, pulling out common factors:
10 • (10x-3)
Step-5: Add up the four terms of step 4:
(x+10) • (10x-3)
Which is the desired factorization
Thus your answer is
