If we have the angle and magnitude of a vector A we can find its Cartesian components using the following formula

Where | A | is the magnitude of the vector and
is the angle that it forms with the x axis in the opposite direction to the hands of the clock.
In this problem we know the value of Ax and Ay and we need the angle
.
Vector A is in the 4th quadrant
So:

So:

So:

= -47.28 ° +360° = 313 °
= 313 °
Option 4.
Linear momentum is the product of mass and velocity. In this case, it is simply:
Wood isn't as tough as rock. Wood also breaks down in weather and cracks under pressure. Plus rocks were more accessible.
Answer:
(a) 17.37 rad/s^2
(b) 12479
Explanation:
t = 95 s, r = 6 cm = 0.06 m, v = 99 m/s, w0 = 0
w = v / r = 99 / 0.06 = 1650 rad/s
(a) Use first equation of motion for rotational motion
w = w0 + α t
1650 = 0 + α x 95
α = 17.37 rad/s^2
(b) Let θ be the angular displacement
Use third equation of motion for rotational motion
w^2 = w0^2 + 2 α θ
1650^2 = 0 + 2 x 17.37 x θ
θ = 78367.87 rad
number of revolutions, n = θ / 2 π
n = 78367.87 / ( 2 x 3.14)
n = 12478.9 ≈ 12479
Answer:
F= 5.71 N
Explanation:
width of door= 0.91 m
door closer torque on door= 5.2 Nm
In order to hold the door in open position we need to exert an equal and opposite torque, to the door closer torque, on the door.
so wee need to exert 5.2 Nm torque on the door.
If we want to apply minimum force to exert the required torque we need to apply force perpendicularly on the door knob (end of door) so that to to greater moment arm.
T= r x F
T= r F sin∅
F= T/ (r * sin∅)
F= 5.2/ (0.91 * 1)
F= 5.71 N