<span>It is possible to determine which cart to which ch is connected if the graph would show electrical charge, ie, amps or voltage. If the graph showed a series circuit diagram this would also allow determination. Bottom line is that a correct graph data will show the requested information.</span>
The magnitude of the electric field on the master charge is 1.008 x 10¹⁰ N/C, and the force on the test charge is 5.04 x 10⁹ N.
<h3>Electric field on the master charge</h3>
E = kq/r²
where;
- q is magnitude of master charge
- r is distance of separation
- k is Coulomb's constant
E = (9 x 10⁹ x 0.63)/(0.75²)
E = 1.008 x 10¹⁰ N/C
<h3>Force on the test charge</h3>
F = Eq
where;
- E is electric field
- q is the test charge
F = (1.008 x 10¹⁰) x (0.5)
F = 5.04 x 10⁹ N
Thus, the magnitude of the electric field on the master charge is 1.008 x 10¹⁰ N/C, and the force on the test charge is 5.04 x 10⁹ N.
Learn more about electric field here: brainly.com/question/14372859
#SPJ1
Answer:
The pressure at the top of the step is 129.303 kilopascals.
Explanation:
From Hydrostatics we find that the pressure difference between extremes of the water column is defined by the following formula, which is a particular case of the Bernoulli's Principle (
):
(1)
,
- Total pressures at the bottom and at the top, measured in pascals.
- Density of the water, measured in kilograms per cubic meter.
- Height difference of the step, measured in meters.
If we know that
,
,
and
, then the pressure at the top of the step is:




The pressure at the top of the step is 129.303 kilopascals.
Answer:
The speed with which the man flies forward is 5.5 m/s
Explanation:
The mass of the man = 100 kg
The mass of the scooter = 10 kg
The speed with which the man was traveling on the scooter = 5 m/s
The speed of the scooter after it hits the rock = 0 m/s
Let v represent the speed with which the man flies forward
The formula for momentum, P, is P = Mass × Velocity
The conservation of linear momentum principle is, the total initial momentum = The total final momentum, therefore, we have;
The total initial momentum = (100 kg + 10 kg) × 5 m/s = 550 kg·m/s
The total final momentum = 100 kg × v + 10 kg × 0 m/s = 100 kg × v
When the momentum is conserved, we have;
550 kg·m/s = 100 kg × v
∴ v = 550 kg·m/s/(100 kg) = 5.5 m/s.
The speed with which the man flies forward = v = 5.5 m/s
The pressure at a certain depth underwater is:
P = ρgh
P = pressure, ρ = sea water density, g = gravitational acceleration near Earth, h = depth
The pressure exerted on the submarine window is:
P = F/A
P = pressure, F = force, A = area
The area of the circular submarine window is:
A = π(d/2)²
A = area, d = diameter
Set the expressions for the pressure equal to each other:
F/A = ρgh
Substitute A:
F/(π(d/2)²) = ρgh
Isolate h:
h = F/(ρgπ(d/2)²)
Given values:
F = 1.1×10⁶N
ρ = 1030kg/m³ (pulled from a Google search)
g = 9.81m/s²
d = 30×10⁻²m
Plug in and solve for h:
h = 1.1×10⁶/(1030(9.81)π(30×10⁻²/2)²)
h = 1540m