Scientific form = 6.5 x 109.
Answer: We can define the solar constant as a measure of the luminous flux density.
Explanation:
The solar constant or solar constant is the amount of energy radiated at the upper limit of the Earth's atmosphere per unit time perpendicular to the unit surface, at the Earth's mean distance from the sun. Amounts to 1367.7 W / m² ± 6 W / m². The sun's constant includes all kinds of electromagnetic radiation, not just visible light. The average value is 1,368 kW / m2 and changes slightly with solar cycles. The amount of these constant changes over one year and has different benefits.
Answer:
a
The radial acceleration is 
b
The horizontal Tension is 
The vertical Tension is 
Explanation:
The diagram illustrating this is shown on the first uploaded
From the question we are told that
The length of the string is 
The mass of the bob is 
The angle made by the string is 
The centripetal force acting on the bob is mathematically represented as

Now From the diagram we see that this force is equivalent to
where T is the tension on the rope and v is the linear velocity
So

Now the downward normal force acting on the bob is mathematically represented as

So

=> 
=> 
The centripetal acceleration which the same as the radial acceleration of the bob is mathematically represented as

=> 
substituting values


The horizontal component is mathematically represented as

substituting value

The vertical component of tension is

substituting value

The vector representation of the T in term is of the tension on the horizontal and the tension on the vertical is

substituting value
![T = [(0.3294) i + (3.3712)j ] \ N](https://tex.z-dn.net/?f=T%20%20%3D%20%5B%280.3294%29%20i%20%20%2B%20%283.3712%29j%20%5D%20%5C%20%20N)
Answer:
(a) m = 33.3 kg
(b) d = 150 m
(c) vf = 30 m/s
Explanation:
Newton's second law to the block:
∑F = m*a Formula (1)
∑F : algebraic sum of the forces in Newton (N)
m : mass s (kg)
a : acceleration (m/s²)
Data
F= 100 N
a= 3.0 m/s²
(a) Calculating of the mass of the block:
We replace dta in the formula (1)
F = m*a
100 = m*3
m = 100 / 3
m = 33.3 kg
Kinematic analysis
Because the block moves with uniformly accelerated movement we apply the following formulas:
d= v₀t+ (1/2)*a*t² Formula (2)
vf= v₀+a*t Formula (3)
Where:
d:displacement in meters (m)
t : time interval in seconds (s)
v₀: initial speed in m/s
vf: final speed in m/s
a: acceleration in m/s²
Data
a= 3.0 m/s²
v₀= 0
t = 10 s
(b) Distance the block will travel if the force is applied for 10 s
We replace dta in the formula (2):
d= v₀t+ (1/2)*a*t²
d = 0+ (1/2)*(3)*(10)²
d =150 m
(c) Calculate the speed of the block after the force has been applied for 10 s
We replace dta in the formula (3):
vf= v₀+a*t
vf= 0+(3*(10)
vf= 30 m/s
All you would do is for a, 10 times 2 is 20 so it would be 20-dB
For b, 10 times 4 is 40 so it would be 40-dB
<span>For c, 10 times 8 is 80 so it would be 80-dB</span>