Find the median of the set of deta<br>
84, 97, 77, 31, 84, 63, 58, 72, 47, 84, 69, 94, 43, 68
blsea [12.9K]
Answer:
70.5
Step-by-step explanation:
Set of Data (Prioritized):
31, 43, 47, 58, 63, 68, <u>69, 72,</u> 77, 84, 84, 84, 94, 97
To find the median:
(69 + 72) ÷ 2
= 70.5
Therefore, the median is equal to 70.5.
Answer:
Step-by-step explanation:
Well....if 1/7 liters of milk makes 1/6 of a jug
Then six times this must be a full jug....so
6*(1/7) =
6/7 liters of milk required
i hope this helps you happy holidays let me know if you need more information
<u>Step-by-step explanation:</u>
transform the parent graph of f(x) = ln x into f(x) = - ln (x - 4) by shifting the parent graph 4 units to the right and reflecting over the x-axis
(???, 0): 0 = - ln (x - 4)

0 = ln (x - 4)

1 = x - 4
<u> +4 </u> <u> +4 </u>
5 = x
(5, 0)
(???, 1): 1 = - ln (x - 4)

1 = ln (x - 4)

e = x - 4
<u> +4 </u> <u> +4 </u>
e + 4 = x
6.72 = x
(6.72, 1)
Domain: x - 4 > 0
<u> +4 </u> <u>+4 </u>
x > 4
(4, ∞)
Vertical asymptotes: there are no vertical asymptotes for the parent function and the transformation did not alter that
No vertical asymptotes
*************************************************************************
transform the parent graph of f(x) = 3ˣ into f(x) = - 3ˣ⁺⁵ by shifting the parent graph 5 units to the left and reflecting over the x-axis
Domain: there is no restriction on x so domain is all real number
(-∞, ∞)
Range: there is a horizontal asymptote for the parent graph of y = 0 with range of y > 0. the transformation is a reflection over the x-axis so the horizontal asymptote is the same (y = 0) but the range changed to y < 0.
(-∞, 0)
Y-intercept is when x = 0:
f(x) = - 3ˣ⁺⁵
= - 3⁰⁺⁵
= - 3⁵
= -243
Horizontal Asymptote: y = 0 <em>(explanation above)</em>
As it stands, it's none of those. I believe you were going for the distance formula but copied it wrong.
Using a calculator, the equation for the line of best fit where x represents the month and y represents the time is given by:
a. y = −1.74x + 46.6
<h3>How to find the equation of linear regression using a calculator?</h3>
To find the equation, we need to insert the points (x,y) in the calculator.
For this problem, the points (x,y) are given as follows, from the given table:
(1, 46), (2, 42), (3,40), (4, 41), (5, 38), (6,36).
Hence, inserting these points in the calculator, the equation for the line of best fit where x represents the month and y represents the time is given by:
a. y = −1.74x + 46.6
More can be learned about a line of best fit at brainly.com/question/22992800
#SPJ1