The magnetic dipole moment of the current loop is 0.025 Am².
The magnetic torque on the loop is 2.5 x 10⁻⁴ Nm.
<h3>What is magnetic dipole moment?</h3>
The magnetic dipole moment of an object, is the measure of the object's tendency to align with a magnetic field.
Mathematically, magnetic dipole moment is given as;
μ = NIA
where;
- N is number of turns of the loop
- A is the area of the loop
- I is the current flowing in the loop
μ = (1) x (25 A) x (0.001 m²)
μ = 0.025 Am²
The magnetic torque on the loop is calculated as follows;
τ = μB
where;
- B is magnetic field strength
B = √(0.002² + 0.006² + 0.008²)
B = 0.01 T
τ = μB
τ = 0.025 Am² x 0.01 T
τ = 2.5 x 10⁻⁴ Nm
Thus, the magnetic dipole moment of the current loop is determined from the current and area of the loop while the magnetic torque on the loop is determined from the magnetic dipole moment.
Learn more about magnetic dipole moment here: brainly.com/question/13068184
#SPJ1
Image from a far away object formed by a concave mirror
I have no idea but this is my best guess as a sophomore in college
Answer: Things continue doing what they are doing unless a force is applied to it. Objects have a natural tendency to resist change. This is INERTIA. Heavier objects (objects with more mass) are more difficult to move and stop. Heavier objects (greater mass) resist change more than lighter objects, so true
Explanation:
Pushing a bicycle or a Cadillac, or stopping them once moving. The more massive the object (more inertia) the harder it is to start or stop. The Cadillac has more of a tendency to stay stationary (or continue moving), and resist a change in motion than a bicycle.
Inconsistent. You should take three readings at least.