Answer:
1)a. It is constant the whole time the ball is in free-fall.
2)b. = 14 m/s
3) e. = 19.6 m/s
Explanation:
1) given that the only force acting on the ball is gravity, gravity acts along the vertical axis. Since no other force acts on the ball then the horizontal velocity will remain constant all through the flight since there is no horizontal force acting on the ball.
2) speed = distance/time
horizontal distance = 56m
Time = 4 seconds
Speed = 56m/4s = 14m/s
3) acceleration due to gravity g = 9.8m/s^2
Initial vertical velocity = u
Final vertical velocity = v = -u
Using the law of motion;
v = u + at
a = acceleration = -g = -9.8m/s^2
t = time of flight = 4
Substituting the values;
-u = u - 4(9.8)
-2u = -4(9.8)
u = -4(9.8)/-2
u = 2(9.8) = 19.6 m/s
Initial vertical velocity = u = 19.6 m/s
Answer:
A
Explanation: A is a example of Air resistance force, which is a contact force.
Answer:
<em><u>mark</u></em><em><u> </u></em><em><u>me</u></em><em><u> </u></em><em><u>brianliest</u></em><em><u> </u></em><em><u>plz</u></em>
Explanation:
- Law of inertia, also called Newton's first law, postulate in physics that, if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force.
- Law of Inertia states that a body in a state of rest or uniform motion remains in the same state until and unless an external force acts on it.
- A body continues to be in its state of rest or in uniform motion along a straight line unless an external force is applied on it. This law is also called law of inertia.