1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slamgirl [31]
3 years ago
15

Any fracture or system of fractures along which Earth moves is known as a

Physics
1 answer:
azamat3 years ago
7 0
The answer is B.) Stress 
You might be interested in
To Which of the following represents the relative order of wavelengths from least
Alex787 [66]

Answer:

A) ultraviolet light ---> violet light ----> red light-----> infrared light

Explanation:

We know that the electromagnetic spectrum with the wavelength from least to greatest is (also refer attachment)

  • gamma ray
  • X- rays
  • Ultra-violet
  • Visible            

                  Violet

                  Indigo

                  Blue

                  Green

                  Yellow

                   Orange

                   Red

  • Infra-red
  • Microwave
  • Radio wave

Hence the relative order of wavelengths from least to greatest in the electromagnetic spectrum is

    A) ultraviolet light ---> violet light ----> red light-----> infrared light

5 0
4 years ago
Calculate the work performed by an ideal Carnot engine as a cold brick warms from 150 K to the temperature of the environment, w
olga nikolaevna [1]

To solve this problem, apply the concepts related to the calculation of the work performed according to the temperature change (in an ideal Carnot cycle), for which you have to:

W = \int\limit_{T_c}^{T_H} C (1-\frac{T_H}{T})

Where,

C = Heat capacity of the Brick

T_C= Cold Temperature

T_H = Hot Temperature

Integrating,

W = C (T_H-T_C)- T_H C ln (\frac{T_H}{T_C})

Our values are given as

T_H= 300K

T_C = 150K

Replacing,

W = (1) (300-150)-300(1)ln(2)

W = 150-300ln2

W = -57.94kJ \approx 58kJ

Therefore the work perfomed by this ideal carnot engine is 58kJ

5 0
4 years ago
If you travel 5 miles north then turn and travel 5 miles south, you are now _____ miles from where you started.
horsena [70]
0 miles from where you started
3 0
3 years ago
Read 2 more answers
A high-temperature, gas-cooled nuclear reactor consists of a composite, cylindrical wall for which a thorium fuel element (kth =
WARRIOR [948]

Answer:

a) T_1 = 938 K , T_2 = 931 K

b) To prevent softening of the materials, which would occur below their  melting points, the reactor should not be operated much above:

                                      q = 3*10^8 W/m^3

Explanation:

Given:

- See the attachment for the figure for this question.

- Melting point of Thorium T_th = 2000 K

- Melting point of Thorium T_g = 2300 K

Find:

a) If the thermal energy is uniformly generated in the fuel element at a rate q = 10^8 W/m^3 then what are the temperatures T_1 and T_2 at the inner and outer surfaces, respectively, of the fuel element?

b) Compute and plot the temperature distribution in the composite wall for selected values of q.  What is the maximum allowable value of q.

Solution:

part a)

- The outer surface temperature of the fuel, T_2, may be determined from the rate equation:

                                 q*A_th = T_2 - T_inf / R'_total

Where,

           A_th: Area of the thorium section

           T_inf: The temperature of coolant = 600 K

           R'_total: The resistance per unit length.

- Calculate the resistance per unit length R' from thorium surface to coolant:

           R'_total = Ln(r_3/r_2) / 2*pi*k_g + 1 / 2*pi*r_3*h

Plug in values:

           R'_total = Ln(14/11) / 2*pi*3 + 1 / 2*pi*0.014*2000

           R'_total = 0.0185 mK / W

- And the heat rate per unit length may be determined by applying an energy balance to a control surface  about the fuel element. Since the interior surface of the element is essentially adiabatic, it follows that:

           q' = q*A_th = q*pi*(r_2^2 - r_1^2)

           q' = 10^8*pi*(0.011^2 - 0.008^2) = 17,907 W / m

Hence,

           T_2 = q' * R'_total + T_inf

           T_2 = 17,907*0.0185 + 600

          T_2 = 931 K

- With zero heat flux at the inner surface of the fuel element, We will apply the derived results for boundary conditions as follows:

 T_1 = T_2 + (q*r_2^2/4*k_th)*( 1 - (r_1/r_2)^2) - (q*r_1^2/2*k_th)*Ln(r_2/r_1)

Plug values in:

 T_1 = 931+(10^8*0.011^2/4*57)*( 1 - (.8/1.1)^2) - (10^8*0.008^2/2*57)*Ln(1.1/.8)

 T_1 = 931 + 25 - 18 = 938 K

part b)

The temperature distributions may be obtained by using the IHT model for one-dimensional, steady state conduction in a hollow tube. For the fuel element (q > 0),  an adiabatic surface condition is  prescribed at r_1 while heat transfer from the outer surface at r_2 to the coolant is governed by the thermal  resistance:

                              R"_total = 2*pi*r_2*R'_total

                              R"_total = 2*pi*0.011*0.0185 = 0.00128 m^2K/W

- For the graphite ( q = 0 ), the value of T_2 obtained from the foregoing solution is prescribed as an inner boundary condition at r_2, while a convection condition is prescribed at the outer surface (r_3).

- For 5*10^8 < q and q > 5*10^8, the distributions are given in attachment.

The graphs obtained:

- The comparatively large value of k_t yields small temperature variations across the fuel element,  while the small value of k_g results in large temperature variations across the graphite.

Operation  at q = 5*10^8 W/^3  is clearly unacceptable, since the melting points of thorium and graphite are exceeded  and approached, respectively. To prevent softening of the materials, which would occur below their  melting points, the reactor should not be operated much above:

                                      q = 3*10^8 W/m^3

6 0
3 years ago
Solids diffuse because the particles cannot move.
Nastasia [14]

Solids cannot diffuse.

4 0
3 years ago
Read 2 more answers
Other questions:
  • While driving, your car has an initial position of 3.2 m, an initial velocity of -8.4 m/s, and
    12·1 answer
  • Define instantaneous velocity
    5·1 answer
  • Really need help with these three similar physics questions as soon as possible!!!
    11·1 answer
  • A 120-V rms voltage at 60.0 Hz is applied across an inductor, a capacitor, and a resistor in series. If the rms value of the cur
    7·1 answer
  • PLEASE HELP!!!!!!!! ONLY IF UR 100% SURE!!!!!!!!!!!!!!
    15·1 answer
  • What is the momentum of a 3kg ball that is traveling at 5m/s
    14·2 answers
  • 3. Describe how sound signals can be transmitted from a cell phone and received by another cell phone.
    10·1 answer
  • What are newtons and do they have any type also?​
    5·1 answer
  • PLEASE HELP THIS TEST IS DUE IN TEN MINS
    9·2 answers
  • I need help ASAP!!!! Here’s the question. Stephanie is going to buy an ice cream cone. She can pick a sugar cone or a waffle con
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!