The resistance at operating temperature is R = V/I = 2.9 V / 0.23A = 12.61 ohmsT from R – R0 = Roalpha (T – T0), we find that:T = T0 + 1/alpha (R/R0 -1) = 20 degrees Celsius + (1/ 4.3 x 10^-3/K) (12.61 ohms/ 1.1 ohms – 1)T = 2453.40 degrees Celsius
Answer:
F = 1300 N
Explanation:
F = mv²/R = 0.4(100²)/3 = 1333.3333...
Answer:
The order of magnitude of the distance from the sun to Earth is 10⁸ km.
Explanation:
The order of magnitude of the distance from the sun to Earth can be calculated as follows:

Where:
c: is the speed of light = 3x10⁸ m/s
t: is the time = 8 min
Hence, the distance is:

Therefore, the order of magnitude of the distance from the sun to Earth is 10⁸ km.
I hope it helps you!