Answer:
B. About 12 degrees
Explanation:
The orbital period is calculated using the following expression:
T = 2π*(
)
Where r is the distance of the planet to the sun, G is the gravitational constant and m is the mass of the sun.
Now, we don't actually need to solve the values of the constants, since we now that the distance from the sun to Saturn is 10 times the distance from the sun to the earth. We now this because 1 AU is the distance from the earth to the sun.
Now, we divide the expression used to calculate the orbital period of Saturn by the expression used to calculate the orbital period of the earth. Notice that the constants will cancel and we will get the rate of orbital periods in terms of the distances to the sun:
= 
Knowing that the orbital period of the earth is 1 year, the orbital period of Saturn will be
years, or 31.62 years.
We find the amount of degrees it moves in 1 year:

or about 12 degrees.
Answer:
Explanation:
The football players collide in a completely inelastic collision, in other words they have the same velocity after the collision, this velocity has a magnitude V=1.6m/s.
We need to use the conservation of momentum Law, the total momentum is the same before and after the collision, at the initial point the receiver does not have any speed
(1)
We solve in order to find the receiver mass:
Answer:
695800 N/m^2 or Pa
Explanation:
Height of the water from the ground H = 71 m
Acceleration due to gravity g =9.8 m/s^2
density of water ρ= 1000 kg/m^3
The minimum output gauge pressure to make water reach height H
P= ρgH
= 1000×9.8×71= 695800 N/m^2 or Pa
Explanation:
Below is an attachment containing the solution.
The same amount of work being done over a long period of time!