To simplify the process of expanding a binomial of the type (a+b) n (a + b) n, use Pascal's triangle. The same numbered row in Pascal's triangle will match the power of n that the binomial is being raised to.
A triangular array of binomial coefficients known as Pascal's triangle can be found in algebra, combinatorics, and probability theory. Even though other mathematicians studied it centuries before him in India, Persia, China, Germany, and Italy, it is called after the French mathematician Blaise Pascal in a large portion of the Western world. Traditionally, the rows of Pascal's triangle are listed from row =0 at the top (the 0th row). Each row's entries are numbered starting at k=0 on the left and are often staggered in relation to the numbers in the next rows. The triangle could be created in the manner shown below: The top row of the table, row 0, contains one unique nonzero entry.
Learn more about triangle here
brainly.com/question/2773823
#SPJ4
Answer:
C
Step-by-step explanation:
Assume the surface area = 6x²
6 is the number of faces and x is the length of the cube
so 3/2 = 6x²
Divide by 6
1/4 = x²
Square root both sides
1/2 = x
Volume is : l×w×h
so 1/2 × 1/2 × 1/2 = 1/8

There are 2 roots so the only way to complete the square is,
![y=2x^2+8x-9\\y=2[(x^2+4x)]-9\\y=2[(x^2+4x+4)-4]-9\\y=2[(x+2)^2-4]-9\\y=2(x+2)^2-8-9\\y=2(x+2)^2-17](https://tex.z-dn.net/?f=y%3D2x%5E2%2B8x-9%5C%5Cy%3D2%5B%28x%5E2%2B4x%29%5D-9%5C%5Cy%3D2%5B%28x%5E2%2B4x%2B4%29-4%5D-9%5C%5Cy%3D2%5B%28x%2B2%29%5E2-4%5D-9%5C%5Cy%3D2%28x%2B2%29%5E2-8-9%5C%5Cy%3D2%28x%2B2%29%5E2-17)
Just factor 2 out of 2x^2+8x (just ignore the -9) then find the number that will make the terms be able to complete the square.
then complete the square and multiply 2 inside the brackets.
subtraction as you already get the vertex form and know how to complete the square.
Vertex Form: 
Answer:
correct experiment: viral culture test
Trial: (RCT) random control trial
It causes mild sickness or death
-31 Because it is a negative number
Explaination I’m smart Thank me cause I’m right