1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dahasolnce [82]
4 years ago
12

The Department of Agriculture is monitoring the spread of mice by placing 100 mice at the start of the project. The population,

P, of the rats is expected to grow according to the differential equation dP dt equals the product of 0.04 times P and the quantity 1 minus P over 500 , where P t is measured in months. When does the population of the rats reach 200? Give your answer to the nearest month. (
Mathematics
1 answer:
uranmaximum [27]4 years ago
6 0

Answer:

Step-by-step explanation:

Assuming that the differential equation is

\frac{dP}{dt} = 0.04P\left(1-\frac{P}{500}\right).

We need to solve it and obtain an expression for P(t) in order to complete the exercise.

First of all, this is an example of the logistic equation, which has the general form

\frac{dP}{dt} = kP\left(1-\frac{P}{K}\right).

In order to make the calculation easier we are going to solve the general equation, and later substitute the values of the constants, notice that k=0.04 and K=500 and the initial condition P(0)=100.

Notice that this equation is separable, then

\frac{dP}{P(1-P/K)} = kdt.

Now, intagrating in both sides of the equation

\int\frac{dP}{P(1-P/K)} = \int kdt = kt +C.

In order to calculate the integral in the left hand side we make a partial fraction decomposition:

\frac{1}{P(1-P/K)} = \frac{1}{P} - \frac{1}{K-P}.

So,

\int\frac{dP}{P(1-P/K)} = \ln|P| - \ln|K-P| = \ln\left| \frac{P}{K-P} \right| = -\ln\left| \frac{K-P}{P} \right|.

We have obtained that:

-\ln\left| \frac{K-P}{P}\right| = kt +C

which is equivalent to

\ln\left| \frac{K-P}{P}\right|= -kt -C

Taking exponentials in both hands:

\left| \frac{K-P}{P}\right| = e^{-kt -C}

Hence,

\frac{K-P(t)}{P(t)} = Ae^{-kt}.

The next step is to substitute the given values in the statement of the problem:

\frac{500-P(t)}{P(t)} = Ae^{-0.04t}.

We calculate the value of A using the initial condition P(0)=100, substituting t=0:

\frac{500-100}{100} = A} and A=4.

So,

\frac{500-P(t)}{P(t)} = 4e^{-0.04t}.

Finally, as we want the value of t such that P(t)=200, we substitute this last value into the above equation. Thus,

\frac{500-200}{200} = 4e^{-0.04t}.

This is equivalent to \frac{3}{8} = e^{-0.04t}. Taking logarithms we get \ln\frac{3}{8} = -0.04t. Then,

t = \frac{\ln\frac{3}{8}}{-0.04} \approx 24.520731325.

So, the population of rats will be 200 after 25 months.

You might be interested in
HELP:. In baseball, the distance from the pitcher's mound to the batter is 60.5 feet. A pitcher can throw the baseball at 121 fe
Ray Of Light [21]

Answer:

Hello the answer to your question is 0.4 sec.

Step-by-step explanation:

Hope this helps

3 0
3 years ago
Calculate 0.8 of $4500​
aleksandr82 [10.1K]
$3,600 is 0.8% (or 80%) of $4,500.
3 0
2 years ago
Find the domain of the Bessel function of order 0 defined by [infinity]J0(x) = Σ (−1)^nx^2n/ 2^2n(n!)^2 n = 0
Snowcat [4.5K]

Answer:

Following are the given series for all x:

Step-by-step explanation:

Given equation:

\bold{J_0(x)=\sum_{n=0}^{\infty}\frac{((-1)^{n}(x^{2n}))}{(2^{2n})(n!)^2}}\\

Let   the value a so, the value of a_n  and the value of a_(n+1)is:

\to  a_n=\frac{(-1)^2n x^{2n}}{2^{2n}(n!)^2}

\to a_{(n+1)}=\frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)}((n+1))!^2}

To calculates its series we divide the above value:

\left | \frac{a_(n+1)}{a_n}\right |= \frac{\frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)}((n+1))!^2}}{\frac{(-1)^2n x^{2n}}{2^{2n}(n!)^2}}\\\\

           = \left | \frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)}((n+1))!^2} \cdot \frac {2^{2n}(n!)^2}{(-1)^2n x^{2n}} \right |

           = \left | \frac{ x^{2n+2}}{2^{2n+2}(n+1)!^2} \cdot \frac {2^{2n}(n!)^2}{x^{2n}} \right |

           = \left | \frac{ x^{2n+2}}{2^{2n+2}(n+1)^2 (n!)^2} \cdot \frac {2^{2n}(n!)^2}{x^{2n}} \right |\\\\= \left | \frac{x^{2n}\cdot x^2}{2^{2n} \cdot 2^2(n+1)^2 (n!)^2} \cdot \frac {2^{2n}(n!)^2}{x^{2n}} \right |\\\\

           = \frac{x^2}{2^2(n+1)^2}\longrightarrow 0   for all x

The final value of the converges series for all x.

8 0
4 years ago
Tolong bantuin pakai cara ​
Mama L [17]

Answer:

1364

Step-by-step explanation:

1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364

a1+a2 = a3, a2+a3=a4 etcetera..

1+3 =4

3+4 =7

4+7=11

.

.

a13+a14 = a15

521+843 = 1364

so, 1364 is the answer

7 0
3 years ago
Help me -_- lzzzzzzzzzzzz​
PolarNik [594]

Answer:3.1 Miles

Step-by-step explanation:Your welcome

7 0
3 years ago
Other questions:
  • I need the answer to this please
    7·1 answer
  • John flips 10 coins and lays them out in a straight line.
    13·1 answer
  • A company sells cookies in 250-gram packs. When a particular batch of 1,000 packs was weighed, the mean weight per pack was 255
    5·1 answer
  • What is the solution to this equation-20x=300<br> A. x=-15<br> B. x=-25<br> C. x=15<br> D. x=25
    12·2 answers
  • Help ASAP !!!!!!
    12·1 answer
  • Alonso multiplied the fractions 312and (−414) and got a product of −1218. Describe the mistake that Alonso made. What is the cor
    12·1 answer
  • Help me please and the work please
    6·1 answer
  • Question 5 of 15
    6·1 answer
  • What is the difference? 9/4 - 1/7​
    7·2 answers
  • HELP!!!! HELP!!! HELP!!!<br><br>Simple Intrest...!​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!