1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dahasolnce [82]
3 years ago
12

The Department of Agriculture is monitoring the spread of mice by placing 100 mice at the start of the project. The population,

P, of the rats is expected to grow according to the differential equation dP dt equals the product of 0.04 times P and the quantity 1 minus P over 500 , where P t is measured in months. When does the population of the rats reach 200? Give your answer to the nearest month. (
Mathematics
1 answer:
uranmaximum [27]3 years ago
6 0

Answer:

Step-by-step explanation:

Assuming that the differential equation is

\frac{dP}{dt} = 0.04P\left(1-\frac{P}{500}\right).

We need to solve it and obtain an expression for P(t) in order to complete the exercise.

First of all, this is an example of the logistic equation, which has the general form

\frac{dP}{dt} = kP\left(1-\frac{P}{K}\right).

In order to make the calculation easier we are going to solve the general equation, and later substitute the values of the constants, notice that k=0.04 and K=500 and the initial condition P(0)=100.

Notice that this equation is separable, then

\frac{dP}{P(1-P/K)} = kdt.

Now, intagrating in both sides of the equation

\int\frac{dP}{P(1-P/K)} = \int kdt = kt +C.

In order to calculate the integral in the left hand side we make a partial fraction decomposition:

\frac{1}{P(1-P/K)} = \frac{1}{P} - \frac{1}{K-P}.

So,

\int\frac{dP}{P(1-P/K)} = \ln|P| - \ln|K-P| = \ln\left| \frac{P}{K-P} \right| = -\ln\left| \frac{K-P}{P} \right|.

We have obtained that:

-\ln\left| \frac{K-P}{P}\right| = kt +C

which is equivalent to

\ln\left| \frac{K-P}{P}\right|= -kt -C

Taking exponentials in both hands:

\left| \frac{K-P}{P}\right| = e^{-kt -C}

Hence,

\frac{K-P(t)}{P(t)} = Ae^{-kt}.

The next step is to substitute the given values in the statement of the problem:

\frac{500-P(t)}{P(t)} = Ae^{-0.04t}.

We calculate the value of A using the initial condition P(0)=100, substituting t=0:

\frac{500-100}{100} = A} and A=4.

So,

\frac{500-P(t)}{P(t)} = 4e^{-0.04t}.

Finally, as we want the value of t such that P(t)=200, we substitute this last value into the above equation. Thus,

\frac{500-200}{200} = 4e^{-0.04t}.

This is equivalent to \frac{3}{8} = e^{-0.04t}. Taking logarithms we get \ln\frac{3}{8} = -0.04t. Then,

t = \frac{\ln\frac{3}{8}}{-0.04} \approx 24.520731325.

So, the population of rats will be 200 after 25 months.

You might be interested in
The weight of an organ in adult males has a bell-shaped distribution with a mean of 310 grams and a standard deviation of 25 gra
Shkiper50 [21]

Answer:

About 68% of organs will be between 300 grams and 320 grams, about 95% of organs will be About 68% of organs will be between 300 grams and 320 grams, About 68% of organs will be between 300 grams and 320 grams, about 95% of organs will be between 280 grams and 360 grams, the percentage of organs weighs less than 280 grams or more than 360 grams is 5%, and the percentage of organs weighs between 300 grams and 360 grams is 81.5%.

Given :

The weight of an organ in adult males has a bell-shaped distribution with a mean of 320 grams and a standard deviation of 20 grams.

A) According to the empirical rule, using the values of mean and standard deviation:

\rm \mu-\sigma = 320-20=300 \; gramsμ+σ=320+20=320grams

Therefore, about 68% of organs will be between 300 grams and 320 grams.

B) Again according to the empirical rule, using the values of mean and standard deviation:

\rm \mu-2\times \sigma = 320-40=280 \; gramsμ−2×σ=320−40=280grams

\rm \mu+2\times \sigma = 320+40=360 \; gramsμ+2×σ=320+40=360grams

Therefore, according to the empirical rule, about 95% of organs will be between 280 grams and 360 grams.

C)

The percentage of organs weighs less than 280 grams or more than 360 grams = 100 - (The percentage of organs weighs between 280 grams and 360 grams)

The percentage of organs weighs less than 280 grams or more than 360 grams = 100 - 95 = 5%

D)

The percentage of organs weighs between 300 grams and 360 grams = 0.5 \times× ( percentage of organs weighs between 280 grams and 360 grams + percentage of organs weighs between 300 grams and 320 grams)

The percentage of organs weighs between 300 grams and 360 grams = 0.5 \times× (95 + 68)

So, the percentage of organs weighing between 300 grams and 360 grams is 81.5%.

For more information, refer to the link given below:

brainly.com/question/23017717 95% of organs will be between 280 grams and 360 grams, the percentage of organs weighs less than 280 grams or more than 360 grams is 5%, and the percentage of organs weighs between 300 grams and 360 grams is 81.5%.

Given :

The weight of an organ in adult males has a bell-shaped distribution with a mean of 320 grams and a standard deviation of 20 grams.

A) According to the empirical rule, using the values of mean and standard deviation:

\rm \mu-\sigma = 320-20=300 \; gramsμ−σ=320−20=300grams

\rm \mu+\sigma = 320+20=320 \; gramsμ+σ=320+20=320grams

Therefore, about 68% of organs will be between 300 grams and 320 grams.

B) Again according to the empirical rule, using the values of mean and standard deviation:

\rm \mu-2\times \sigma = 320-40=280 \; gramsμ−2×σ=320−40=280grams

\rm \mu+2\times \sigma = 320+40=360 \; gramsμ+2×σ=320+40=360grams

Therefore, according to the empirical rule, about 95% of organs will be between 280 grams and 360 grams.

C)

The percentage of organs weighs less than 280 grams or more than 360 grams = 100 - (The percentage of organs weighs between 280 grams and 360 grams)

The percentage of organs weighs less than 280 grams or more than 360 grams = 100 - 95 = 5%

D)

The percentage of organs weighs between 300 grams and 360 grams = 0.5 \times× ( percentage of organs weighs between 280 grams and 360 grams + percentage of organs weighs between 300 grams and 320 grams)

The percentage of organs weighs between 300 grams and 360 grams = 0.5 \times× (95 + 68)

So, the percentage of organs weighing between 300 grams and 360 grams is 81.5%.

For more information, refer to the link given below:

brainly.com/question/23017717

5 0
3 years ago
Please find sin r please
LiRa [457]
Sin r = 20/29

SOHCAHTOA

R:
(O) opposite - 20
(A) adjacent - 21
(H) hypotenuse - 29
4 0
3 years ago
What’s the answer to this question???
Hitman42 [59]
Size bc it’s 8 numbers away
7 0
3 years ago
kai owns a bakery and uses 25 grams of sugar for every 75 grams of butter in a pastry recipe. Using this information, complete t
eduard
50/150, 75/225, 100/300, 125/375.
8 0
3 years ago
Read 2 more answers
2,242-:-33=<br> In Long Division or Just The aanswer
Verizon [17]
The answer is 67.93939393939394
6 0
4 years ago
Read 2 more answers
Other questions:
  • HELPPPPPPPPP 55 POINTS Isabel graphed the following system of equations.
    7·1 answer
  • It takes 2 1/2 poster boards to display half of your project. How many poster boards will you need for your entire project?
    9·1 answer
  • 0.2(x + 15) = 0.5(3x - 7)
    6·1 answer
  • Bernie wants to write equations in the form y=mx+b for the lines passing through point P that are parallel and perpendicular to
    5·2 answers
  • How to now your timetables by your hands
    14·2 answers
  • The function c = 100 + 0.30m represents the cost c (in dollars) of renting a car after driving m miles. What would the cost be t
    5·1 answer
  • The line plot shows the weights of packages of meat purchased at a supermarket. Which of the following conclusions about the lin
    12·2 answers
  • PLS I RLLY NEED HELP I MIGHT GIVE BRAINLIEST Just pls help
    9·2 answers
  • A grain of sand has a diameter that is 2 mm long. Under a magnifying glass, it looks 20 mm long. What magnification was used?​
    5·1 answer
  • If f(x) = x^3 and g(x) = -2x^3, how has f(x) been transformed to get g(x)?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!