1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mixer [17]
3 years ago
10

6xb is less than 12 but greater than 6

Mathematics
1 answer:
photoshop1234 [79]3 years ago
7 0
I interpret your "xb" to mean "6 times b."  Please do not use " x " to indicate multiplication.  Use " * " if you wish.

6 < 6b < 12, which can be reduced to 1 < b < 2
You might be interested in
Consider the following. C: counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1), starting at (0, 0)
horsena [70]

Answer:

a.

\mathbf{r_1 = (t,0)  \implies  t = 0 \ to \ 1}

\mathbf{r_2 = (2-t,t-1)  \implies  t = 1 \ to \ 2}

\mathbf{r_3 = (0,3-t)  \implies  t = 2 \ to \ 3}

b.

\mathbf{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}+11}{6}}

Step-by-step explanation:

Given that:

C: counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1), starting at (0, 0)

a. Find a piecewise smooth parametrization of the path C.

r(t) = { 0

If C: counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1),

Then:

C_1 = (0,0) \\ \\  C_2 = (1,0) \\ \\ C_3 = (0,1)

Also:

\mathtt{r_1 = (0,0) + t(1,0) = (t,0) }

\mathbf{r_1 = (t,0)  \implies  t = 0 \ to \ 1}

\mathtt{r_2 = (1,0) + t(-1,1) = (1- t,t) }

\mathbf{r_2 = (2-t,t-1)  \implies  t = 1 \ to \ 2}

\mathtt{r_3 = (0,1) + t(0,-1) = (0,1-t) }

\mathbf{r_3 = (0,3-t)  \implies  t = 2 \ to \ 3}

b Evaluate :

Integral of (x+2y^1/2)ds

\mathtt{\int  \limits ^1_{c1} (x+ 2 \sqrt{y}) ds = \int  \limits ^1_{0} \ (t + 0)  \sqrt{1} } \\ \\ \mathtt{  \int  \limits ^1_{c1} (x+ 2 \sqrt{y}) ds = \begin {pmatrix} \dfrac{t^2}{2} \end {pmatrix} }^1_0 \\ \\  \mathtt{\int  \limits ^1_{c1} (x+ 2 \sqrt{y}) ds = \dfrac{1}{2}}

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds = \int  \limits (x+2 \sqrt{y} \sqrt{(\dfrac{dx}{dt})^2 + (\dfrac{dy}{dt})^2 \ dt } }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds = \int  \limits 2- t + 2\sqrt{t-1}  \ \sqrt{1+1}  }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2} \int  \limits^2_1  2- t + 2\sqrt{t-1} \ dt }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} 2t - \dfrac{t^2}{2}+ \dfrac{2(t-1)^{3/2}}{3} (2)  \end {pmatrix} ^2_1}

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} 2 -\dfrac{1}{2} (4-1)+\dfrac{4}{3} (1)^{3/2} -0 \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} 2 -\dfrac{3}{2} + \dfrac{4}{3} \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} \dfrac{12-9+8}{6} \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} \dfrac{11}{6} \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =   \dfrac{ \sqrt{2}  }{6} \  (11 )}

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =   \dfrac{ 11 \sqrt{2}  }{6}}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds =  \int  \limits ^3_2 0+2 \sqrt{3-t}   \ \sqrt{0+1} }

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds =  \int  \limits ^3_2 2 \sqrt{3-t}   \ dt}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds =  \int  \limits^3_2 \begin {pmatrix}  \dfrac{-2(3-t)^{3/2}}{3} (2) \end {pmatrix}^3_2 }

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds = -\dfrac{4}{3} [(0)-(1)]}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds = -\dfrac{4}{3} [-(1)]}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds = \dfrac{4}{3}}

\mathtt{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}}{6}+\dfrac{1}{2}+ \dfrac{4}{3}}

\mathtt{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}+3+8}{6}}

\mathbf{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}+11}{6}}

5 0
3 years ago
The function ​f(x,y)=2x + 2y has an absolute maximum value and absolute minimum value subject to the constraint 9x^2 - 9xy + 9y^
deff fn [24]

Answer:

the minimum is located in x = -5/3 , y= -5/3

Step-by-step explanation:

for the function

f(x,y)=2x + 2y

we define the function g(x)=9x² - 9xy + 9y² - 25  ( for g(x)=0 we get the constrain)

then using Lagrange multipliers f(x) is maximum when

fx-λgx(x)=0 → 2 - λ (9*2x - 9*y)=0 →

fy-λgy(x)=0 → 2 - λ (9*2y - 9*x)=0

g(x) =0 → 9x² - 9xy + 9y² - 25 = 0

subtracting the second equation to the first we get:

2 - λ (9*2y - 9*x) - (2 - λ (9*2x - 9*y))=0

- 18*y + 9*x + 18*x - 9*y = 0

27*y = 27 x  → x=y

thus

9x² - 9xy + 9y² - 25 = 0

9x² - 9x² + 9x² - 25 = 0

9x² = 25

x = ±5/3

thus

y = ±5/3

for x=5/3 and y=5/3 →  f(x)= 20/3 (maximum) , while for x = -5/3 , y= -5/3 →  f(x)= -20/3  (minimum)

finally evaluating the function in the boundary , we know because of the symmetry of f and g with respect to x and y that the maximum and minimum are located in x=y

thus the minimum is located in x = -5/3 , y= -5/3

4 0
4 years ago
Can u help me wirh some questions please
Pavel [41]

Find the closest whole number estimate for 3.8 and 6.1

The estimate for both numbers are, 4 and 6.

3.8 is rounded up to the nearest whole number, while 6.1 is rounded down to 6because the 1 after the decimal is an insignificant number (its less than 5)

5 0
1 year ago
4
GaryK [48]

Answer:

5/6

Step-by-step explanation:

4/6 + 1/6 = 5/6

4 0
3 years ago
Simplify the expression 4b-24+19
Tpy6a [65]

4b - 24 + 19 = 4b - (-24 + 19) = 4b - 5

4 0
3 years ago
Other questions:
  • Katie bought a cooler that measures 1 1.5 feet by 1foot by 1 1.20 feet. What is the volume of the cooler?
    9·1 answer
  • What is the formula for finding the area of a trapezoid?
    8·1 answer
  • Discover and write an expression to find the nth term in the arithmetic sequence
    14·1 answer
  • What is 2 to the -10th power
    14·1 answer
  • While eating lunch Cary notices that 16 students in her class chose to eat a hot dog, while 12 students in her class chose to ea
    15·2 answers
  • Please solve all the answers down below, and include how you got your answers.
    9·1 answer
  • Helppp ! look at the picture pleaseee
    6·2 answers
  • if the perimeter of the blanket has to be at least 280 inches is there egnough room for all three of them to cuddle up under the
    15·1 answer
  • work out the perimeter of this semicircle the radius is 11cm take π to be 3.142 and write down all of the digits given by your c
    7·1 answer
  • Given the function f(x) = 6x + 1 and the linear function g(x), which function has a greater slope?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!