The profit function P(x) is a parabola.
To find the maximum profit, you need the vertex of the parabola.
The vertex can be found using the formula
![x = \frac{-b}{2a}](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B-b%7D%7B2a%7D%20)
where a = -.001 , b = 3, c = -1800
![x = \frac{-3}{2(-.001)} = 1500](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B-3%7D%7B2%28-.001%29%7D%20%3D%201500)
Part a) Profit is maximized when x = 1500.
To find Profit, plug 'x' into profit function.
![P_{max} = -.001(1500)^2 + 3(1500) - 1800 = 450](https://tex.z-dn.net/?f=P_%7Bmax%7D%20%3D%20-.001%281500%29%5E2%20%2B%203%281500%29%20-%201800%20%3D%20450)
Part b) Daily max Profit is $450
Next to find the break even point, when profit = 0.
Set profit function equal to 0 and solve for 'x'.
This is a quadratic equation, so use the quadratic formula.
![x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a} \\ \\ x = \frac{-3 \pm \sqrt{9 - 4(-.001)(-1800)}}{2(-.001)} \\ \\ x = 829.18 , 2170.82](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B-b%20%5Cpm%20%5Csqrt%7Bb%5E2%20-4ac%7D%7D%7B2a%7D%20%20%5C%5C%20%20%5C%5C%20x%20%20%3D%20%5Cfrac%7B-3%20%5Cpm%20%5Csqrt%7B9%20-%204%28-.001%29%28-1800%29%7D%7D%7B2%28-.001%29%7D%20%5C%5C%20%20%5C%5C%20x%20%3D%20829.18%20%2C%202170.82)
Finally, the avg rate of change is simply the slope of the line between 2 points on the parabola. Use slope formula.
![= \frac{P(2100) - P(1200)}{2100 - 1200} = \frac{90 - 360}{2100-1200} = \frac{-270}{900} = -\frac{3}{10}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7BP%282100%29%20-%20P%281200%29%7D%7B2100%20-%201200%7D%20%3D%20%5Cfrac%7B90%20-%20360%7D%7B2100-1200%7D%20%3D%20%5Cfrac%7B-270%7D%7B900%7D%20%3D%20-%5Cfrac%7B3%7D%7B10%7D%20)
Part d) Avg rate of change = -3/10