1] ⬇
p - (6 - 2(q))➡0
p + 2q - 6➡0
q = 3 because 6÷2 = 0
p = 6 because 6 ÷ 1 = 6
Slope ➡ 0.5
-----------------------------------------------------------------
2] ⬇
p - (1 + q)➡0
p - q- 1➡0
Q = -1 because 1 ÷ -1 ='-1
P = 1 because 1 ÷ 1 = 1
Slope ➡ 1
If the ratio of girls to boys in Mr. Hansen's class is 4:5, and the ratio of girls to boys in Ms. Luna's class is 8:10, then the equation that correctly compares the ratio of both Mr. Hansen's class and Ms. Luna's class are 4/5 = 8/10.
1 = 20 (24-4(1)=20)
2 = 16 (24-4(2)=16)
5 = 4 (24-4(5)=4)
6 = 0 (24-4(6)=0)
Answer: C
Step-by-step explanation: your fast answer is C.
(3 cos x-4 sin x)+(3sin x+4 cos x)=5
(3cos x+4cos x)+(-4sin x+3 sin x)=5
7 cos x-sin x=5
7cos x=5+sin x
(7 cos x)²=(5+sinx)²
49 cos²x=25+10 sinx+sin²x
49(1-sin²x)=25+10 sinx+sin²x
49-49sin²x=25+10sinx+sin²x
50 sin² x+10sinx-24=0
Sin x=[-10⁺₋√(100+4800)]/100=(-10⁺₋70)/100
We have two possible solutions:
sinx =(-10-70)/100=-0.8
x=sin⁻¹ (-0.8)=-53.13º (360º-53.13º=306.87)
sinx=(-10+70)/100=0.6
x=sin⁻¹ 0.6=36.87º
The solutions when 0≤x≤360º are: 36.87º and 306.87º.