Answer:
See there y-intersept and if slope is negative or positive to see if they intersect
Answer:
c
Step-by-step explanation:
Hey There!
So the first thing we want to do is find out what an outlier is
An outlier are points that are distanced from the cluster of points and in this scatterplot there seems to be an outlier ( the point on the bottom right)
so the answer is c
<em>The1AndOnlyMarkus</em>
Answer: d and b i think
Step-by-step explanation:
Explanation:
First, we need to find the values of the sine and cosine of x knowing the value of tan x and x being in the 3rd quadrant. Since tan x = 5/12, using Pythagorean theorem, we know that
![\sin x = -\frac{5}{13}\;\;\text{and}\;\;\cos x = -\frac{12}{13}](https://tex.z-dn.net/?f=%5Csin%20x%20%3D%20-%5Cfrac%7B5%7D%7B13%7D%5C%3B%5C%3B%5Ctext%7Band%7D%5C%3B%5C%3B%5Ccos%20x%20%3D%20-%5Cfrac%7B12%7D%7B13%7D)
Note that both sine and cosine are negative because x is in the 3rd quadrant.
Recall the addition identities listed below:
![\sin(\alpha + \beta) = \sin\alpha\sin\beta + \cos\alpha\cos\beta](https://tex.z-dn.net/?f=%5Csin%28%5Calpha%20%2B%20%5Cbeta%29%20%3D%20%5Csin%5Calpha%5Csin%5Cbeta%20%2B%20%5Ccos%5Calpha%5Ccos%5Cbeta)
![\Rightarrow \sin(180+x) = \sin180\sin x + \cos180\cos x](https://tex.z-dn.net/?f=%5CRightarrow%20%5Csin%28180%2Bx%29%20%3D%20%5Csin180%5Csin%20x%20%2B%20%5Ccos180%5Ccos%20x)
![\;\;\;\;\;\;= -\sin x = \dfrac{5}{13}](https://tex.z-dn.net/?f=%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%3D%20-%5Csin%20x%20%3D%20%5Cdfrac%7B5%7D%7B13%7D)
![\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta](https://tex.z-dn.net/?f=%5Ccos%28%5Calpha%20-%20%5Cbeta%29%20%3D%20%5Ccos%5Calpha%20%5Ccos%5Cbeta%20%2B%20%5Csin%5Calpha%20%5Csin%5Cbeta)
![\Rightarrow \cos(180 - x) = \cos180\cos x + \sin180\sin x](https://tex.z-dn.net/?f=%5CRightarrow%20%5Ccos%28180%20-%20x%29%20%3D%20%5Ccos180%5Ccos%20x%20%2B%20%5Csin180%5Csin%20x)
![\;\;\;\;\;\;=-\cos x = \dfrac{12}{13}](https://tex.z-dn.net/?f=%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%3D-%5Ccos%20x%20%3D%20%5Cdfrac%7B12%7D%7B13%7D)
![\tan(\alpha - \beta) = \dfrac{\tan\alpha - \tan\beta}{1 + \tan\alpha\tan\beta}](https://tex.z-dn.net/?f=%5Ctan%28%5Calpha%20-%20%5Cbeta%29%20%3D%20%5Cdfrac%7B%5Ctan%5Calpha%20-%20%5Ctan%5Cbeta%7D%7B1%20%2B%20%5Ctan%5Calpha%5Ctan%5Cbeta%7D)
![\Rightarrow \tan(360 - x) = \dfrac{\tan 360 - \tan x}{1 + \tan 360 \tan x}](https://tex.z-dn.net/?f=%5CRightarrow%20%5Ctan%28360%20-%20x%29%20%3D%20%5Cdfrac%7B%5Ctan%20360%20-%20%5Ctan%20x%7D%7B1%20%2B%20%5Ctan%20360%20%5Ctan%20x%7D)
![\;\;\;\;\;\;= -\tan x = -\dfrac{5}{12}](https://tex.z-dn.net/?f=%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%3D%20-%5Ctan%20x%20%3D%20-%5Cdfrac%7B5%7D%7B12%7D)
Therefore, the expression reduces to
![\sin(180+x) + \tan(360-x) + \frac{1}{\cos(180-x)}](https://tex.z-dn.net/?f=%5Csin%28180%2Bx%29%20%2B%20%5Ctan%28360-x%29%20%2B%20%5Cfrac%7B1%7D%7B%5Ccos%28180-x%29%7D)
![\;\;\;\;\;= \left(\dfrac{5}{13}\right) + \left(\dfrac{5}{12}\right) + \dfrac{1}{\left(\frac{12}{13}\right)}](https://tex.z-dn.net/?f=%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%3D%20%5Cleft%28%5Cdfrac%7B5%7D%7B13%7D%5Cright%29%20%2B%20%5Cleft%28%5Cdfrac%7B5%7D%7B12%7D%5Cright%29%20%2B%20%5Cdfrac%7B1%7D%7B%5Cleft%28%5Cfrac%7B12%7D%7B13%7D%5Cright%29%7D)
![\;\;\;\;\;= \dfrac{49}{26}](https://tex.z-dn.net/?f=%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%3D%20%5Cdfrac%7B49%7D%7B26%7D)
Answer:
D
Step-by-step explanation:
We know that if angles x and y are complementary, then sin(x)=cos(y).
This means the measures of the angles have to add to 90 degrees, which is satisfied by the fourth option.