Answer:
This is 0.14 to the nearest hundredth
Step-by-step explanation:
Firstly we list the parameters;
Drive to school = 40
Take the bus = 50
Walk = 10
Sophomore = 30
Junior = 35
Senior = 35
Total number of students in sample is 100
Let W be the event that a student walked to school
So P(w) = 10/100 = 0.1
Let S be the event that a student is a senior
P(S) = 35/100 = 0.35
The probability we want to calculate can be said to be;
Probability that a student walked to school given that he is a senior
This can be represented and calculated as follows;
P( w| s) = P( w n s) / P(s)
w n s is the probability that a student walked to school and he is a senior
We need to know the number of seniors who walked to school
From the table, this is 5/100 = 0.05
So the Conditional probability is as follows;
P(W | S ) = 0.05/0.35 = 0.1429
To the nearest hundredth, that is 0.14
Answer:
<em>y= -3</em>
<em>x= 0</em>
Step-by-step explanation:
I will give the explanation in picture, hope you can understand it.
Answer:
the numbers 20, 60, 80, and 120 go on the x axis
the numbers, 3, 9, 12, and 18 go on the y axis
so you go to 20 on the bottom and go up to number 3
60 go up to number 9
80 go up to number 12
120 go up to number 18
Step-by-step explanation:
the value of Y is when X crosses the X axis.
Answer:
Step-by-step explanation:
![f(x) = ( {x}^{3} - 8)^{ \frac{2}{3} } \\ \\ f'(x) = \frac{2}{3} ( {x}^{3} - 8)^{ \frac{2}{3} - 1 } (3 {x}^{2} - 0) \\ \\ f'(x) = \frac{2}{3} ( {x}^{3} - 8)^{ \frac{2 - 3}{3} } \times 3 {x}^{2} \\ \\ f'(x) = 2{x}^{2}( {x}^{3} - 8)^{ \frac{ - 1}{3} } \\ \\ f'(x) = \frac{2{x}^{2}}{( {x}^{3} - 8)^{ \frac{ 1}{3} } } \\ \\ \huge \red{ \boxed{ f'(x) = \frac{2{x}^{2}}{ \sqrt[3]{( {x}^{3} - 8) } } }}](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%28%20%7Bx%7D%5E%7B3%7D%20%20-%208%29%5E%7B%20%5Cfrac%7B2%7D%7B3%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20f%27%28x%29%20%3D%20%20%5Cfrac%7B2%7D%7B3%7D%20%28%20%7Bx%7D%5E%7B3%7D%20%20-%208%29%5E%7B%20%5Cfrac%7B2%7D%7B3%7D%20-%201%20%7D%20%283%20%7Bx%7D%5E%7B2%7D%20%20-%200%29%20%5C%5C%20%20%5C%5C%20f%27%28x%29%20%3D%20%20%5Cfrac%7B2%7D%7B3%7D%20%28%20%7Bx%7D%5E%7B3%7D%20%20-%208%29%5E%7B%20%5Cfrac%7B2%20-%203%7D%7B3%7D%20%20%7D%20%20%5Ctimes%203%20%7Bx%7D%5E%7B2%7D%20%5C%5C%20%20%5C%5C%20f%27%28x%29%20%3D%20%202%7Bx%7D%5E%7B2%7D%28%20%7Bx%7D%5E%7B3%7D%20%20-%208%29%5E%7B%20%5Cfrac%7B%20-%201%7D%7B3%7D%20%20%7D%20%5C%5C%20%20%5C%5C%20f%27%28x%29%20%3D%20%20%20%5Cfrac%7B2%7Bx%7D%5E%7B2%7D%7D%7B%28%20%7Bx%7D%5E%7B3%7D%20%20-%208%29%5E%7B%20%5Cfrac%7B%201%7D%7B3%7D%20%20%7D%20%7D%20%5C%5C%20%20%5C%5C%20%5Chuge%20%5Cred%7B%20%5Cboxed%7B%20f%27%28x%29%20%3D%20%20%20%5Cfrac%7B2%7Bx%7D%5E%7B2%7D%7D%7B%20%5Csqrt%5B3%5D%7B%28%20%7Bx%7D%5E%7B3%7D%20%20-%208%29%20%7D%20%7D%20%7D%7D)