1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Talja [164]
3 years ago
15

Mike is looking for a loan. He is willing to pay no more than an effective rate of 8.000% annually. Which, if any, of the follow

ing loans meet Mike’s criteria? Loan X: 7.815% nominal rate, compounded semiannually Loan Y: 7.724% nominal rate, compounded monthly Loan Z: 7.698% nominal rate, compounded weekly a. Y only b. X and Z c. Y and Z d. None of these meet Mike’s criteria.
Mathematics
2 answers:
RoseWind [281]3 years ago
8 0
If Mike is willing to pay no more than an effective rate of 8.000% annually, the loans that meet his criteria are loan X and loan Z. Of those two, the lowest would be loan X.  I hope the answer will help you :)
LiRa [457]3 years ago
4 0

Answer:

b. X and Z

Step-by-step explanation:

Since, the effective rate is,

r=(1+\frac{i}{n})^i-1

Where, i is the nominal rate,

n is the number of compounding periods,

For loan X,

i = 7.815 % = 0.07815,

n = 2, ( 1 year = 2 semiannual )

Thus, the effective rate would be,

r=(1+\frac{0.07815}{2})^2-1

=0.079676855625

=7.9676855625\%\approx 7.968\%

Since, 7.968 % < 8.000 %,

⇒ Loan X meets Mike's criteria,

For loan Y,

i = 7.724 % = 0.07724,

n = 12 ( 1 year = 12 months ),

Thus, the effective rate would be,

r = ( 1+\frac{0.07724}{12})^{12}-1

=0.0800339518197

=8.00339518197\% \approx 8.003\%

Since, 8.003 % > 8.000 %,

⇒ Loan Y does not meet his criteria,

For loan Z,

i = 7.698 % = 0.07698,

n = 52 ( 1 year = 52 weeks ),

Thus, the effective rate would be,

r = (1+\frac{0.07698}{52})^{52}-1

=0.0799589986135

=7.99589986135\%

\approx 7.996\%

Since, 7.996 % < 8.000 %,

⇒ Loan Z meets his criteria.

Therefore, Option 'b' is correct.

You might be interested in
10.The school needs to purchase a new refrigerator for student rewards. Lowes and Sears have the model
vovangra [49]
Lowe’s would be a better. They would be $10 cheaper even after the delivery fee.
8 0
3 years ago
Are 15:35 and 25:45 the same thing]
marishachu [46]
They are not the same thing.
3 0
3 years ago
A line with a slope of 2/5 passed through the point (-2,3). Write the equations of the line in point-slope form and graph the li
DochEvi [55]

Answer:

y - 3 = (2/5)(x + 2)

Step-by-step explanation:

Start with the general point-slope form of the equation of a straight line:

y - k = m(x - h).  Now substitute -2 for h and 3 for k, and also 2/5 for m:

y - 3 = (2/5)(x + 2)

5 0
3 years ago
Three of the angles of a polygon are
zmey [24]

Answer:

three angles of a polygon are each 105.5,the sum of the angles in the polygon is 2520. find each of the other angles if they are equal to each other. For a polygon with n sides and n angles, the sum of the measures of all the interior angles equals (n-2)180 degrees. 16-3=13

6 0
3 years ago
The time needed to complete a final examination in a particular college course is normally distributed with a mean of 77 minutes
Komok [63]

Answer:

a. The probability of completing the exam in one hour or less is 0.0783

b. The probability that student will complete the exam in more than 60 minutes but less than 75 minutes is 0.3555

c. The number of students will be unable to complete the exam in the allotted time is 8

Step-by-step explanation:

a. According to the given we have the following:

The time for completing the final exam in a particular college is distributed normally with mean (μ) is 77 minutes and standard deviation (σ) is 12 minutes

Hence, For X = 60, the Z- scores is obtained as follows:

Z=  X−μ /σ

Z=60−77 /12

Z=−1.4167

Using the standard normal table, the probability P(Z≤−1.4167) is approximately 0.0783.

P(Z≤−1.4167)=0.0783

Therefore, The probability of completing the exam in one hour or less is 0.0783.

b. In this case For X = 75, the Z- scores is obtained as follows:

Z=  X−μ /σ

Z=75−77 /12

Z=−0.1667

Using the standard normal table, the probability P(Z≤−0.1667) is approximately 0.4338.

Therefore, The probability that student will complete the exam in more than 60 minutes but less than 75 minutes is obtained as follows:

P(60<X<75)=P(Z≤−0.1667)−P(Z≤−1.4167)

=0.4338−0.0783

=0.3555

​

Therefore, The probability that student will complete the exam in more than 60 minutes but less than 75 minutes is 0.3555

c. In order to compute  how many students you expect will be unable to complete the exam in the allotted time we have to first compute the Z−score of the critical value (X=90) as follows:

Z=  X−μ /σ

Z=90−77 /12

Z​=1.0833

UsING the standard normal table, the probability P(Z≤1.0833) is approximately 0.8599.

Therefore P(Z>1.0833)=1−P(Z≤1.0833)

=1−0.8599

=0.1401

​

Therefore, The number of students will be unable to complete the exam in the allotted time is= 60×0.1401=8.406

The number of students will be unable to complete the exam in the allotted time is 8

6 0
3 years ago
Other questions:
  • A table titled hours spent studying has entries 4, 5, 9, 15, 8, 2, 20, 1, 6, 9, 10, 8, 10, 8, 1, 2.
    7·2 answers
  • There are 30 boys and 35 girls that try out for a chorus. The choir director will select 10 girls and 10 boys from the children
    10·1 answer
  • What is the missing side length in this right triangle?
    6·2 answers
  • Use the quadratic formula to solve x^2-2x+2=0
    5·1 answer
  • What is the equation of this line?
    9·1 answer
  • You can walk 1 1/2 miles in 1/2 an hour what is your average speed
    13·1 answer
  • Find the sides marked with letters:<br>m = ? z = ?<br><br>​
    9·1 answer
  • Kiara traveled 190miles in 19hours. Find he speed in miles per hour.
    11·1 answer
  • HELP I NEED HELP ASAPD DHEWUHFWUFHWKEJFB;KWFBEUFB;KWEGFWKFJBWKBFKWEFBIWEUFBWIEFBWEIBFWEFBIWUEFIWEU HEP !!! ANSWER PLEASE!!
    11·1 answer
  • How long did it take the pizza to reach 0 degrees Celsius?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!