People who went out and sailed on the sea and then they went on missions
Explanation :
(1) Involuntary muscles are the muscles that are not controlled by our will.
(2) Tendons are the connective tissues that join the muscle to bones. Tendons are tissues that have fibers.
(3) Cardiac muscle is also involuntary muscles. For example heart muscle. It shows contraction and relaxation throughout life.
(4) Voluntary muscle is the muscles that are not controlled by our will.
(5) Biceps are the arm muscles.
Hence, this the required explanation as per options.
Answer:
ξ = 0.00845020162 V or 8.4 mV
Explanation:
Magnetic flux measures the total magnetic field that passes through a known area. Magnetic flux describe the effect of magnetic field in a given area. Mathematically,
magnetic flux (Ф) = BA cos ∅
where
A = test area
B = magnetic field
before the flip
Ф = Bπr²N
N = number of turn
magnitude of induced emf = N |ΔФ/Δt|
ξ = 2Nπr²B/dt
ξ = 2 × 22 × π × (1.02/2)² × 0.000047/0.2
ξ = 44 × π × 0.51² × 0.000047/0.2
ξ = 44 × π × 0.2601 × 0.000047/0.2
ξ = 0.0005378868 × 3.142/0.2
ξ = 0.00169004032/0.2
ξ = 0.00845020162 V or 8.4 mV
Answer:
128.9 N
Explanation:
The force exerted on the golf ball is equal to the rate of change of momentum of the ball, so we can write:
![F=\frac{\Delta p}{\Delta t}](https://tex.z-dn.net/?f=F%3D%5Cfrac%7B%5CDelta%20p%7D%7B%5CDelta%20t%7D)
where
F is the force
is the change in momentum
is the time interval
The change in momentum can be written as
![\Delta p = m(v-u)](https://tex.z-dn.net/?f=%5CDelta%20p%20%3D%20m%28v-u%29)
where
m = 0.04593 kg is the mass of the ball
u = 0 is the initial velocity of the ball
is the final velocity of the ball
Substituting into the original equation, we find the force exerted on the golf ball:
![F=\frac{m(v-u)}{\Delta t}=\frac{(0.04593)(78.1-0)}{0.030}=128.9 N](https://tex.z-dn.net/?f=F%3D%5Cfrac%7Bm%28v-u%29%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B%280.04593%29%2878.1-0%29%7D%7B0.030%7D%3D128.9%20N)
Answer:
5644556677888777766554433