1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergeinik [125]
3 years ago
7

An atom is chemically stable when it’s outer_____ is completely filled with _____.

Physics
1 answer:
Svetlanka [38]3 years ago
8 0

an atom is chemically stable when its outer layer is completely filled with energy. im pretty sure this is right

You might be interested in
HELP!!
tresset_1 [31]

Answer:

So do 2400 divided by 70. I got 34.285714 and the numbers behind the decimal are repeating. If you round it you get 34.3

3 0
2 years ago
The movement of the tectonic plates is caused by?
Sveta_85 [38]
The movement of the tectonic plates is caused by convection currents in Earth´s mantle.

Answer: A) convection currents in Earth´s mantle.
7 0
3 years ago
Read 2 more answers
You want to raise the temperature of 22kg of water from 60°C to 95°C. If electricity costs $0.08/kWh, how much would it cost you
Sladkaya [172]

Answer:

dgtgh

Explanation:

dgdfhdhfffff thdhfghjfj e

3 0
3 years ago
A point charge q1 = 1.0 µC is at the origin and a point charge q2 = 6.0 µC is on the x axis at x = 1 m.
iris [78.8K]

To solve this problem we will apply the concepts related to the Electrostatic Force given by Coulomb's law. This force can be mathematically described as

F = \frac{kq_1q_2}{d^2}

Here

k = Coulomb's Constant

q_{1,2} = Charge of each object

d = Distance

Our values are given as,

q_1 = 1 \mu C

q_2 = 6 \mu C

d = 1 m

k =  9*10^9 Nm^2/C^2

a) The electric force on charge q_2 is

F_{12} = \frac{ (9*10^9 Nm^2/C^2)(1*10^{-6} C)(6*10^{-6} C)}{(1 m)^2}

F_{12} = 54 mN

Force is positive i.e. repulsive

b) As the force exerted on q_2 will be equal to that act on q_1,

F_{21} = F_{12}

F_{21} = 54 mN

Force is positive i.e. repulsive

c) If q_2 = -6 \mu C, a negative sign will be introduced into the expression above i.e.

F_{12} = \frac{(9*10^9 Nm^2/C^2)(1*10^{-6} C)(-6*10^{-6} C)}{(1 m)^{2}}

F_{12} = F_{21} = -54 mN

Force is negative i.e. attractive

6 0
3 years ago
A spherical shell is rolling without slipping at constant speed on a level floor. What percentage of the shell's total kinetic e
IgorC [24]

Answer:

41.667 per cent of the total kinetic energy is translational kinetic energy.

Explanation:

As the spherical shell is rolling without slipping at constant speed, the system can be considered as conservative due to the absence of non-conservative forces (i.e. drag, friction) and energy equation can be expressed only by the Principle of Energy Conservation, whose total energy is equal to the sum of rotational and translational kinetic energies. That is to say:

E = K_{t} + K_{r}

Where:

E - Total energy, measured in joules.

K_{r} - Rotational kinetic energy, measured in joules.

K_{t} - Translational kinetic energy, measured in joules.

The spherical shell can be considered as a rigid body, since there is no information of any deformation due to the motion. Then, rotational and translational components of kinetic energy are described by the following equations:

Rotational kinetic energy

K_{r} = \frac{1}{2}\cdot I_{g}\cdot \omega^{2}

Translational kinetic energy

K_{t} = \frac{1}{2}\cdot m \cdot R^{2}\cdot \omega^{2}

Where:

I_{g} - Moment of inertia of the spherical shell with respect to its center of mass, measured in kg\cdot m^{2}.

\omega - Angular speed of the spherical shell, measured in radians per second.

R - Radius of the spherical shell, measured in meters.

After replacing each component and simplifying algebraically, the total energy of the spherical shell is equal to:

E = \frac{1}{2}\cdot (I_{g} + m\cdot R^{2})\cdot \omega^{2}

In addition, the moment of inertia of a spherical shell is equal to:

I_{g} = \frac{2}{3}\cdot m\cdot R^{2}

Then, total energy is reduced to this expression:

E = \frac{5}{6}\cdot m \cdot R^{2}\cdot \omega^{2}

The fraction of the total kinetic energy that is translational in percentage is given by the following expression:

\%K_{t} = \frac{K_{t}}{E}\times 100\,\%

\%K_{t} = \frac{\frac{1}{2}\cdot m \cdot R^{2}\cdot \omega^{2} }{\frac{5}{6}\cdot m \cdot R^{2}\cdot \omega^{2} } \times 100\,\%

\%K_{t} = \frac{5}{12}\times 100\,\%

\%K_{t} = 41.667\,\%

41.667 per cent of the total kinetic energy is translational kinetic energy.

7 0
3 years ago
Other questions:
  • Which property do liquids and gases share?
    6·2 answers
  • How do acids taste?<br><br> A. Sweet<br> B. Soapy<br> C. Bitter<br> D. Sour
    15·2 answers
  • while playing her guitar , karen plucks one string with increasin levels of force. what effect does this have on the sound produ
    6·1 answer
  • A capacitor consists of two closely spaced metal conductors of large area, separated by a thin insulating foil. it has an electr
    10·1 answer
  • Two large aluminum plates are separated by a distance of 2.0 cm and are held at a potential difference of 170 V. An electron ent
    10·1 answer
  • Is there a link between the number of bulbs and current drawn from the power pack?
    5·1 answer
  • To apply Problem-Solving Strategy 12.2 Sound intensity. You are trying to overhear a most interesting conversation, but from you
    15·1 answer
  • How does a physicist answer a specific question
    5·1 answer
  • Hi! Can somebody please help?
    6·1 answer
  • The blue, hotter stars tend to have shorter lifetimes than the red, cooler stars.<br> true<br> false
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!