Answer:
32 m and -2.4 m/s
Explanation:
Given:
v₀ = 25 m/s
t = 2.8 s
a = -9.8 m/s²
Find: Δy, v
Δy = v₀ t + ½ at²
Δy = (25 m/s) (2.8 s) + ½ (-9.8 m/s²) (2.8 s)²
Δy = 31.6 m
v = at + v₀
v = (-9.8 m/s²) (2.8 s) + 25 m/s
v = -2.44 m/s
Rounded to two significant figures, the bullet reaches a height of 32 m and a velocity of -2.4 m/s.
Answer:
For which country do we locate the most earthquakes? Japan. The whole country is in a very active seismic area, and they have the densest seismic network in the world, so they are able to record many earthquakes.
plz mark as brainlist
<span>Answer:
So it gets to the top of the ramp and stops. The parallel force pushing it down the ramp is mg sin θ, but for it to move, the frictional force must be overcome. This frictional force is μmg cos θ, where μ is the coefficient of static friction. For movement, then,
mg sin θ > μmg cos θ ==> tan θ > μ ==> θ > arctan 0.5 = 26.565° ==> θ = 27°</span>
Answer:
a) 578.0 cm²
b) 25.18 km
Explanation:
We're given the density and mass, so first calculate the volume.
D = M / V
V = M / D
V = (6.740 g) / (19.32 g/cm³)
V = 0.3489 cm³
a) The volume of any uniform flat shape (prism) is the area of the base times the thickness.
V = Ah
A = V / h
A = (0.3489 cm³) / (6.036×10⁻⁴ cm)
A = 578.0 cm²
b) The volume of a cylinder is pi times the square of the radius times the length.
V = πr²h
h = V / (πr²)
h = (0.3489 cm³) / (π (2.100×10⁻⁴ cm)²)
h = 2.518×10⁶ cm
h = 25.18 km
The surface is frictionless, so there is no frictional force acting on the ball. There are no other forces acting on the ball in the horizontal direction, so it's a uniform motion with constant speed. Therefore, the velocity of the ball will remain the same for the entire duration of the motion, and so after 5 seconds the velocity is still 15 m/s.