Answer:
1. When we reflect the shape I along X axis it will take the shape I in first quadrant, and then if we rotate the shape I by 90° clockwise, it will take the shape again in second quadrant . So we are not getting shape II. This Option is Incorrect.
2. Second Option is correct , because by reflecting the shape I across X axis and then by 90° counterclockwise rotation will take the Shape I in second quadrant ,where we are getting shape II.
3. a reflection of shape I across the y-axis followed by a 90° counterclockwise rotation about the origin takes the shape I in fourth Quadrant. →→ Incorrect option.
4. This option is correct, because after reflecting the shape through Y axis ,and then rotating the shape through an angle of 90° in clockwise direction takes it in second quadrant.
5. A reflection of shape I across the x-axis followed by a 180° rotation about the origin takes the shape I in third quadrant.→→Incorrect option
Answer:
12.3
Step-by-step explanation:
You will use cosine to solve for y because you are given the hypontenuse and need to find the adjacent side.
cos 35 degrees = adjacent/hypontenuse
cos 35 = y/ 15
15( cos35 ) = y
y=12.287
=12.3
Proportional relationships<span>: A </span>relationship<span> between two equal ratios. Proportions are the comparison of two equal ratios. Therefore, </span>proportionalrelationships<span> are </span>relationships<span> between two equal ratios. For example, oranges are sold in a bag of 5 for $2. The ratio of oranges to their cost is 5:2 or.</span><span>In mathematics, two variables are proportional if a change in one is always accompanied by a change in the other, and if the changes are always related by use of a constant multiplier. The constant is called the coefficient of proportionality or proportionality constant.</span>