Answer:
the dimension of the poster = 90 cm length and 60 cm width i.e 90 cm by 60 cm.
Step-by-step explanation:
From the given question.
Let p be the length of the of the printed material
Let q be the width of the of the printed material
Therefore pq = 2400 cm ²
q = ![\dfrac{2400 \ cm^2}{p}](https://tex.z-dn.net/?f=%5Cdfrac%7B2400%20%5C%20cm%5E2%7D%7Bp%7D)
To find the dimensions of the poster; we have:
the length of the poster to be p+30 and the width to be ![\dfrac{2400 \ cm^2}{p} + 20](https://tex.z-dn.net/?f=%5Cdfrac%7B2400%20%5C%20cm%5E2%7D%7Bp%7D%20%2B%2020)
The area of the printed material can now be: ![A = (p+30)(\dfrac{2400 }{p} + 20)](https://tex.z-dn.net/?f=A%20%3D%20%28p%2B30%29%28%5Cdfrac%7B2400%20%7D%7Bp%7D%20%2B%2020%29)
=![2400 +20 p +\dfrac{72000}{p}+600](https://tex.z-dn.net/?f=2400%20%2B20%20p%20%2B%5Cdfrac%7B72000%7D%7Bp%7D%2B600)
Let differentiate with respect to p; we have
![\dfrac{dA}{dp}= 20 - \dfrac{72000}{p^3}](https://tex.z-dn.net/?f=%5Cdfrac%7BdA%7D%7Bdp%7D%3D%2020%20-%20%5Cdfrac%7B72000%7D%7Bp%5E3%7D)
Also;
![\dfrac{d^2A}{dp^2}= \dfrac{144000}{p^3}](https://tex.z-dn.net/?f=%5Cdfrac%7Bd%5E2A%7D%7Bdp%5E2%7D%3D%20%5Cdfrac%7B144000%7D%7Bp%5E3%7D)
For the smallest area ![\dfrac{dA}{dp }=0](https://tex.z-dn.net/?f=%5Cdfrac%7BdA%7D%7Bdp%20%7D%3D0)
![20 - \dfrac{72000}{p^2}=0](https://tex.z-dn.net/?f=20%20-%20%5Cdfrac%7B72000%7D%7Bp%5E2%7D%3D0)
![p^2 = \dfrac{72000}{20}](https://tex.z-dn.net/?f=p%5E2%20%3D%20%5Cdfrac%7B72000%7D%7B20%7D)
p² = 3600
p =√3600
p = 60
Since p = 60 ; replace p = 60 in the expression q =
to solve for q;
q =
q = ![\dfrac{2400 \ cm^2}{60}](https://tex.z-dn.net/?f=%5Cdfrac%7B2400%20%5C%20cm%5E2%7D%7B60%7D)
q = 40
Thus; the printed material has the length of 60 cm and the width of 40cm
the length of the poster = p+30 = 60 +30 = 90 cm
the width of the poster =
=
= 40 + 20 = 60
Hence; the dimension of the poster = 90 cm length and 60 cm width i.e 90 cm by 60 cm.