Answer:
The equation for b would be y = 1/2x + 1
Step-by-step explanation:
In order to find this, start by finding two points on the line. We'll use (0,1) and (2, 2). From there we start by finding the slope.
m(slope) = (y2 - y1)/(x2 - x1)
m = (2 - 1)/(2 - 0)
m = 1/2
Now using that, we can plug it, along with a point into point-slope form to get the answer.
y - y1 = m(x - x1)
y - 1 = 1/2(x - 0)
y - 1 = 1/2x
y = 1/2x + 1
We draw region ABC. Lines that connect y = 0 and y = x³ are vertical so:
(i) prependicular to the axis x - disc method;
(ii) parallel to the axis y - shell method;
(iii) parallel to the line x = 18 - shell method.
Limits of integration for x are easy x₁ = 0 and x₂ = 9.
Now, we have all information, so we could calculate volume.
(i)

![V=\pi\cdot\int\limits_0^9(x^3)^2\, dx=\pi\cdot\int\limits_0^9x^6\, dx=\pi\cdot\left[\dfrac{x^7}{7}\right]_0^9=\pi\cdot\left(\dfrac{9^7}{7}-\dfrac{0^7}{7}\right)=\dfrac{9^7}{7}\pi=\\\\\\=\boxed{\dfrac{4782969}{7}\pi}](https://tex.z-dn.net/?f=V%3D%5Cpi%5Ccdot%5Cint%5Climits_0%5E9%28x%5E3%29%5E2%5C%2C%20dx%3D%5Cpi%5Ccdot%5Cint%5Climits_0%5E9x%5E6%5C%2C%20dx%3D%5Cpi%5Ccdot%5Cleft%5B%5Cdfrac%7Bx%5E7%7D%7B7%7D%5Cright%5D_0%5E9%3D%5Cpi%5Ccdot%5Cleft%28%5Cdfrac%7B9%5E7%7D%7B7%7D-%5Cdfrac%7B0%5E7%7D%7B7%7D%5Cright%29%3D%5Cdfrac%7B9%5E7%7D%7B7%7D%5Cpi%3D%5C%5C%5C%5C%5C%5C%3D%5Cboxed%7B%5Cdfrac%7B4782969%7D%7B7%7D%5Cpi%7D)
Answer B. or D.
(ii)

![V=2\pi\cdot\int\limits_0^{9}(x\cdot x^3)\, dx=2\pi\cdot\int\limits_0^{9}x^4\, dx= 2\pi\cdot\left[\dfrac{x^5}{5}\right]_0^9=2\pi\cdot\left(\dfrac{9^5}{5}-\dfrac{0^5}{5}\right)=\\\\\\=2\pi\cdot\dfrac{9^5}{5}=\boxed{\dfrac{118098}{5}\pi}](https://tex.z-dn.net/?f=V%3D2%5Cpi%5Ccdot%5Cint%5Climits_0%5E%7B9%7D%28x%5Ccdot%20x%5E3%29%5C%2C%20dx%3D2%5Cpi%5Ccdot%5Cint%5Climits_0%5E%7B9%7Dx%5E4%5C%2C%20dx%3D%0A2%5Cpi%5Ccdot%5Cleft%5B%5Cdfrac%7Bx%5E5%7D%7B5%7D%5Cright%5D_0%5E9%3D2%5Cpi%5Ccdot%5Cleft%28%5Cdfrac%7B9%5E5%7D%7B5%7D-%5Cdfrac%7B0%5E5%7D%7B5%7D%5Cright%29%3D%5C%5C%5C%5C%5C%5C%3D2%5Cpi%5Ccdot%5Cdfrac%7B9%5E5%7D%7B5%7D%3D%5Cboxed%7B%5Cdfrac%7B118098%7D%7B5%7D%5Cpi%7D)
So we know that the correct answer is D.
(iii)
Line x = h

![V=2\pi\cdot\int\limits_0^9\big((18-x)\cdot x^3\big)\, dx=2\pi\cdot\int\limits_0^9(18x^3-x^4)\, dx=\\\\\\=2\pi\cdot\left(\int\limits_0^918x^3\, dx-\int\limits_0^9x^4\, dx\right)=2\pi\cdot\left(18\int\limits_0^9x^3\, dx-\int\limits_0^9x^4\, dx\right)=\\\\\\=2\pi\cdot\left(18\left[\dfrac{x^4}{4}\right]_0^9-\left[\dfrac{x^5}{5}\right]_0^9\right)=2\pi\cdot\Biggl(18\biggl(\dfrac{9^4}{4}-\dfrac{0^4}{4}\biggr)-\biggl(\dfrac{9^5}{5}-\dfrac{0^5}{5}\biggr)\Biggr)=\\\\\\](https://tex.z-dn.net/?f=V%3D2%5Cpi%5Ccdot%5Cint%5Climits_0%5E9%5Cbig%28%2818-x%29%5Ccdot%20x%5E3%5Cbig%29%5C%2C%20dx%3D2%5Cpi%5Ccdot%5Cint%5Climits_0%5E9%2818x%5E3-x%5E4%29%5C%2C%20dx%3D%5C%5C%5C%5C%5C%5C%3D2%5Cpi%5Ccdot%5Cleft%28%5Cint%5Climits_0%5E918x%5E3%5C%2C%20dx-%5Cint%5Climits_0%5E9x%5E4%5C%2C%20dx%5Cright%29%3D2%5Cpi%5Ccdot%5Cleft%2818%5Cint%5Climits_0%5E9x%5E3%5C%2C%20dx-%5Cint%5Climits_0%5E9x%5E4%5C%2C%20dx%5Cright%29%3D%5C%5C%5C%5C%5C%5C%3D2%5Cpi%5Ccdot%5Cleft%2818%5Cleft%5B%5Cdfrac%7Bx%5E4%7D%7B4%7D%5Cright%5D_0%5E9-%5Cleft%5B%5Cdfrac%7Bx%5E5%7D%7B5%7D%5Cright%5D_0%5E9%5Cright%29%3D2%5Cpi%5Ccdot%5CBiggl%2818%5Cbiggl%28%5Cdfrac%7B9%5E4%7D%7B4%7D-%5Cdfrac%7B0%5E4%7D%7B4%7D%5Cbiggr%29-%5Cbiggl%28%5Cdfrac%7B9%5E5%7D%7B5%7D-%5Cdfrac%7B0%5E5%7D%7B5%7D%5Cbiggr%29%5CBiggr%29%3D%5C%5C%5C%5C%5C%5C)

Answer D. just as before.
It means that there is one whole and another whole that is split into 10 pieces and one part(tenth) of that is filled in. That is what it means.
Step-by-step explanation:
since maxima is a point in which a function within a range gives maximum value. And its value is called maximum value of the function over an interval.