Answer:
Step-by-step explanation:
Remark
If this compounds, it means that the interest of the second year has the interest of the first year added to the principle. So if you gain 50 dollars as interest in the first year and the base amount was 1000 dollars, the second year will be taken as 1050 and you will find the interest on that.
Formula
Your formula should be A = P(1 + r)^t
Givens
- A = ??
- P = 165,000
- r = 8% = 8/100 = 0.08
- t = 3 years
Solution
- A = 165000*(1 + 0.08)^3
- A = 165000*(1.08)^3
- A = 165000*1.259712
- A = $207852
Answer: A
<em><u>Problem 2</u></em>
Givens
- P = 5000
- i = 17% = 17/100 = 0.17
- t = 15 years
- A = ?
Formula
A = P (1 + r)*t This is not compounded
Solution
A = 5000*(1 + 0.17)*15
A = [5000*1.17]*15
A = 5850 * 15
A = $87750
Answer C
You have to use the distance formula.
Answer:
Answer: 31,200
Step-by-step explanation:
Every year, 9% interest, or $1,350, is being added to the account. $1,350x12=16,200
16,200 + 15,000 = 31,200
Answer:
<h2><em><u>162</u></em><em><u>0</u></em><em><u> </u></em><em><u>words</u></em></h2>
Step-by-step explanation:
<em><u>Given</u></em><em><u>,</u></em><em><u> </u></em>
Number of words Lucy can type in 5 minutes
= 300 words
<em><u>So</u></em><em><u>,</u></em>
Number of words Lucy can type in 1 minute

= 60 words
<em><u>Therefore</u></em><em><u>,</u></em><em><u> </u></em>
Number of words Lucy can type in 27 minutes
= (60 × 27) words
= 1,620 words
<em><u>Hence</u></em><em><u>,</u></em><em><u> </u></em><em><u>Lucy</u></em><em><u> </u></em><em><u>can</u></em><em><u> </u></em><em><u>type</u></em><em><u> </u></em><em><u>162</u></em><em><u>0</u></em><em><u> </u></em><em><u>words</u></em><em><u> </u></em><em><u>in</u></em><em><u> </u></em><em><u>27</u></em><em><u> </u></em><em><u>minutes</u></em><em><u>.</u></em><em><u> </u></em>
Answer:
60.16 m
Step-by-step explanation:
Let w = width of river
Using trigonometry :
The width, w of the river is can be calculated thus :
Tan θ = opposite / Adjacent
Tan 76 = w / 15
4.0107809 = w / 15
w = 15 * 4.0107809
w = 60.1617 m
Hence, width of the river is 60.16 m