Answer:
Charge density on the sphere = 2.2 × 10⁻⁸ C/m²
Explanation:
Given:
Radius of sphere (r) = 12 cm = 0.12 m
Distance from the electric field R = 24 cm = 0.24 m
Magnitude (E) = 640 N/C
Find:
Charge density on the sphere
Computation:
Charge on the sphere (q) = (1/K)ER² (K = 9 × 10⁹)
Charge on the sphere (q) = [1/(9 × 10⁹)](640)(0.24)²
Charge on the sphere (q) = 4 × 10⁻⁹ C
Charge density on the sphere = q / [4πr²]
Charge density on the sphere = [4 × 10⁻⁹] / [4(3.14)(0.12)²]
Charge density on the sphere = [4 × 10⁻⁹] / [0.18]
Charge density on the sphere = 2.2 × 10⁻⁸ C/m²
Na dame Dolla fo surrrreeeeee
Answer:
tell ke first ,what will happen in zero gravity?
Some rewards are 2.33 miles in a hour so you have to move in 700 degrees to get the system moving faster soo 700+ 2.33 divide by 3
Answer:
The length is 
Explanation:
From the question we are told that
The frequencies of the two successive harmonics are
, 
The speed of sound in the air is 
Generally the frequency of a given harmonic is mathematically represented as

Here n defines the position of the harmonics
Now since the position of both harmonic is not know but we know that they successive then we can represented them mathematically as

and

So

=> 
=> 