1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alisha [4.7K]
2 years ago
13

Someone please help me with these questions! (The ones in the picture) Please I am super confused!

Physics
1 answer:
lozanna [386]2 years ago
3 0

Answer:

c-d

Explanation:

You might be interested in
50 points !! I need help asap.......Consider a 2-kg bowling ball sits on top of a building that is 40 meters tall. It falls to t
r-ruslan [8.4K]

1) At the top of the building, the ball has more potential energy

2) When the ball is halfway through the fall, the potential energy and the kinetic energy are equal

3) Before hitting the ground, the ball has more kinetic energy

4) The potential energy at the top of the building is 784 J

5) The potential energy halfway through the fall is 392 J

6) The kinetic energy halfway through the fall is 392 J

7) The kinetic energy just before hitting the ground is 784 J

Explanation:

1)

The potential energy of an object is given by

PE=mgh

where

m is the mass

g is the acceleration of gravity

h is the height relative to the ground

While the kinetic energy is given by

KE=\frac{1}{2}mv^2

where v is the speed of the object

When the ball is sitting on the top of the building, we have

  • h=40 m, therefore the potential energy is not zero
  • v=0, since the ball is at rest, therefore the kinetic energy is zero

This means that the ball has more potential energy than kinetic energy.

2)

When the ball is halfway through the fall, the height is

h=20 m

So, half of its initial height. This also means that the potential energy is now half of the potential energy at the top (because potential energy is directly proportional to the height).

The total mechanical energy of the ball, which is conserved, is the sum of potential and kinetic energy:

E=PE+KE=const.

At the top of the building,

E=PE_{top}

While halfway through the fall,

PE_{half}=\frac{PE_{top}}{2}=\frac{E}{2}

And the mechanical energy is

E=PE_{half} + KE_{half} = \frac{PE_{top}}{2}+KE_{half}=\frac{E}{2}+KE_{half}

which means

KE_{half}=\frac{E}{2}

So, when the ball is halfway through the fall, the potential energy and the kinetic energy are equal, and they are both half of the total energy.

3)

Just before the ball hits the ground, the situation is the following:

  • The height of the ball relative to the ground is now zero: h=0. This means that the potential energy of the ball is zero: PE=0
  • The kinetic  energy, instead, is not zero: in fact, the ball has gained speed during the fall, so v\neq 0, and therefore the kinetic energy is not zero

Therefore, just before the ball hits the ground, it has more kinetic energy than potential energy.

4)

The potential energy of the ball as it sits on top of the building is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 40 m is the height of the building, where the ball is located

Substituting the values, we find the potential energy of the ball at the top of the building:

PE=(2)(9.8)(40)=784 J

5)

The potential energy of the ball as it is halfway through the fall is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 20 m is the height of the ball relative to the ground

Substituting the values, we find the potential energy of the ball halfway through the fall:

PE=(2)(9.8)(20)=392 J

6)

The kinetic energy of the ball halfway through the fall is given by

KE=\frac{1}{2}mv^2

where

m = 2 kg is the mass of the ball

v = 19.8 m/s is the speed of the ball when it is halfway through the  fall

Substituting the values into the equation, we find the kinetic energy of the ball when it is halfway through the fall:

KE=\frac{1}{2}(2)(19.8)^2=392 J

We notice that halfway through the fall, half of the initial potential energy has converted into kinetic energy.

7)

The kinetic energy of the ball just before hitting the ground is given by

KE=\frac{1}{2}mv^2

where:

m = 2 kg is the mass of the ball

v = 28 m/s is the speed of the ball just before hitting the ground

Substituting the values into the equation, we find the kinetic energy of the ball just before hitting the ground:

KE=\frac{1}{2}(2)(28)^2=784 J

We notice that when the ball is about to hit the ground, all the potential energy has converted into kinetic energy.

Learn more about kinetic and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

4 0
3 years ago
which of these is an example of a biotic factor that could affect the size of a population A-climate b-disease c-a natural disas
andreyandreev [35.5K]

Hey there!

Biotic factors are living organisms. This includes plants, animals, and bacteria. Climate, water, and natural disasters are abiotic factors, which means they are nonliving factors that affect the environment. Disease is caused by bacteria, which is a biotic factor.

Therefore, your answer is B) Disease.

Hope this helps!

4 0
3 years ago
Indicate whether the statement is true or false. Any force that causes an object to move in a circular path is called a centripe
Anna35 [415]
True, the definition of "centripetal force" is <span>a force that acts on a body moving in a circular path and is directed toward the center around which the body is moving.</span>
7 0
2 years ago
You have 13.0 gallons of gasoline. How many liters is this? (1 gallon equals<br> about 3.79 L.)
Harlamova29_29 [7]

Answer:

I believe the answer is C

Explanation:

8 0
3 years ago
Read 2 more answers
How much work is done when an engine generates 400 Watts of power in 25 seconds?
IceJOKER [234]

Answer:

10000 J or 10 KJ

Explanation:

power = workdone/time taken

400 = workdone/25

workdone = 400 * 25

=10000 J

8 0
2 years ago
Read 2 more answers
Other questions:
  • What is the pressure of a 59.6-l gas sample containing 3.01 mol of gas at 44.9°c? (r = 0.0821 l • atm/(k • mol), 1 atm = 760 tor
    9·1 answer
  • Inertia is responsible for :
    14·2 answers
  • A car speeds up from rest to +16 m/ s in 4s. calculate the acceleration
    15·2 answers
  • Why is it more comfortable to fall onto a big pillow than onto a wooden floor ?
    12·1 answer
  • • How does wind shape Earth’s surface?
    14·1 answer
  • A rifle bullet leaves the barrel at 1500 meters per second. If it does not slow down or hit anything, how far can it travel in h
    14·1 answer
  • Does sit-ups reduce belly fat?
    14·2 answers
  • How can you increase efficiency of a simple machine??​
    7·1 answer
  • A lorry pulls forward after initially being stationary, it takes the lorry 80m to reach a speed of
    12·1 answer
  • Suppose the number of coils in the solenoid of an electromagnet is increased. What happens to the electromagnet?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!