The magnetic dipole moment of the current loop is 0.025 Am².
The magnetic torque on the loop is 2.5 x 10⁻⁴ Nm.
<h3>What is magnetic dipole moment?</h3>
The magnetic dipole moment of an object, is the measure of the object's tendency to align with a magnetic field.
Mathematically, magnetic dipole moment is given as;
μ = NIA
where;
- N is number of turns of the loop
- A is the area of the loop
- I is the current flowing in the loop
μ = (1) x (25 A) x (0.001 m²)
μ = 0.025 Am²
The magnetic torque on the loop is calculated as follows;
τ = μB
where;
- B is magnetic field strength
B = √(0.002² + 0.006² + 0.008²)
B = 0.01 T
τ = μB
τ = 0.025 Am² x 0.01 T
τ = 2.5 x 10⁻⁴ Nm
Thus, the magnetic dipole moment of the current loop is determined from the current and area of the loop while the magnetic torque on the loop is determined from the magnetic dipole moment.
Learn more about magnetic dipole moment here: brainly.com/question/13068184
#SPJ1
This statement is true. The greater the mass is in an object, it is indeed the higher resistance to a change in movement the object will have. That only mean that the mass of an object and its resistance to change of movement is directly proportional.
5.972 × 10^24 kg
it is the weight of earth
hope it is helpful to you
The egg is transferred from the ovary to the uterus through muscle contractions called uterine contractions by using special hair like structures called cilia.
We know that impulse is simply the product of Force and time:
Impulse = Force * time
Since Force has a unit of Newton or kg m/s^2 and time is in
seconds, therefore impulse can have units as:
N s
or
<span>kg m/s</span>