Answer:
Solutions, colloids and suspension.
Answer:
Average speed of the swimmer is 4.44 m/s
Explanation:
As we know that the speed is the ratio of distance covered over time interval
so here we can say

so we know that

time taken to complete the trip is

now we have


Answer:
t = 13.43 s
Explanation:
In order to find the minimum time required by the plane to stop, we will use the first equation of motion. The first equation of motion is written as follows:
Vf = Vi + at
where,
Vf = Final Velocity of the Plane = 0 m/s (Since, the plane finally stops)
Vi = Initial Velocity of the Plane = 95 m/s
a = deceleration of the plane = - 7.07 m/s²
t = minimum time interval needed to stop the plane = ?
Therefore,
0 m/s = 95 m/s + (- 7.07 m/s²)t
t = (95 m/s)/(7.07 m/s²)
<u>t = 13.43 s</u>
Answer:
8000J
Explanation:
The kinetic energy of the car lost during breaking are converted to thermal energy and are gained by the brakes.
Kinetic energy loss by car = thermal energy gained by brakes.
∆K.E = ∆T.E ....1
The Kinetic energy loss by car can be expressed as;
∆K.E = K.E1 - K.E2
Initial K.E = K.E1 = 10000J
Final K.E = K.E2 = 2000J
∆K.E= 10000J - 2000J = 8000J
From equation 1,
∆K.E = ∆T.E
∆T.E = 8,000J
thermal energy gain by brakes = 8,000J
Answer:
15 KJ
Explanation:
The quantity of heat (Q) required is given as:
Q = mcΔθ + mL
where m is the mass of ice, c is its specific heat capacity, L is its specific latent heat andΔθ is the change in temperature.
Given: m = 20g, temperature of ice = 0
, specific heat capacity of water = 4200 J/kg
, latent heat of fusion of ice = 3.3 x 10^(5) J/kg, temperature of water = 100
.
Q = m (cΔθ + L)
= 0.02(4200 x (100) + 330000)
= 0.02(420000 + 330000)
= 0.02 (750000)
Q = 15000
Q = 15000 Joules
Q = 15KJ
The quantity of heat needed to complete the conversion is 15 KJ.