Answer:
d= 100m
Explanation:
Cheetah kinematic
The cheetah moves with uniformly accelerated movement, and the formulas that describe this movement are:
d= v₀*t + (1/2)*a*t² Formula (1)
vf²=v₀²+2*a*d Formula (2)
vf=v₀+a*t Formula (3)
Where:
d:distance in meters (m)
v₀: initial speed in m/s
vf: final speed in m/s
a: acceleration in m/s²
t: time in seconds (s)
Known Data
v₀ =0
a = 4.5 m/s²
vf= 30 m/s.
Problem development
We apply the formula (2) that has known data to calculate the distance :
vf²=v₀²+2*a*d
(30)²= 0 + 2* 4.5* d

d= 100m
Answer:
1832
Explanation:
From;
Δp Δx = h/4π
Δp = uncertainty in momentum
Δx = uncertainty in position
h= Plank's constant
But p =mv hence, Δp= Δmv
m= mass, v= velocity
mass of electron = 9.11 * 10^-31 Kg
Mass of proton = 1.67 * 10^-27 Kg
since m is a constant,
Δv = h/Δxm4π
For proton;
Δv = 6.6 * 10^-34/4 * 3.14 * 1.67 * 10^-27 * 1 * 10^-10
Δv = 315 ms-1
For electron;
Δv = 6.6 * 10^-34/4 * 3.14 * 9.11 * 10^-31 * 1 * 10^-10
Δv = 577000 ms-1
Ratio of uncertainty of electron to that of proton = 577000 ms-1/315 ms-1= 1832
Hmmm the only formula i know is v = d * t or volocity = distance * time
Answer:
Speed can be thought of as the rate at which an object covers distance.
Explanation:
Each horse's force forms a right angle triangle with the barge and subtends an angle of 60/2 = 30°. The resultant in the direction of the barge's motion is:
Fx = Fcos(∅)
We can multiply this by 2 to find the resultant of both horses.
Fx = 2Fcos(∅)
Fx = 2 x 720cos(30)
Fx = 1247 N