1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miss Akunina [59]
3 years ago
8

Solve for x 6/x^2+2x-15 +7/x+5 =2/x-3

Mathematics
1 answer:
timama [110]3 years ago
4 0

Answer:

x = ((-5)^(1/3) (2140 - 9 sqrt(56235))^(2/3) - 17 (-5)^(2/3))/(15 (2140 - 9 sqrt(56235))^(1/3)) - 1/3 or x = 1/15 (17 5^(2/3) (-1/(2140 - 9 sqrt(56235)))^(1/3) - (-5)^(1/3) (9 sqrt(56235) - 2140)^(1/3)) - 1/3 or x = -1/3 - 17/(3 (10700 - 45 sqrt(56235))^(1/3)) - (2140 - 9 sqrt(56235))^(1/3)/(3 5^(2/3))

Step-by-step explanation:

Solve for x:

6/x^2 + (2 x - 8)/(x + 5) = 2/x - 3

Bring 6/x^2 + (2 x - 8)/(x + 5) together using the common denominator x^2 (x + 5). Bring 2/x - 3 together using the common denominator x:

(2 (x^3 - 4 x^2 + 3 x + 15))/(x^2 (x + 5)) = (2 - 3 x)/x

Cross multiply:

2 x (x^3 - 4 x^2 + 3 x + 15) = x^2 (2 - 3 x) (x + 5)

Expand out terms of the left hand side:

2 x^4 - 8 x^3 + 6 x^2 + 30 x = x^2 (2 - 3 x) (x + 5)

Expand out terms of the right hand side:

2 x^4 - 8 x^3 + 6 x^2 + 30 x = -3 x^4 - 13 x^3 + 10 x^2

Subtract -3 x^4 - 13 x^3 + 10 x^2 from both sides:

5 x^4 + 5 x^3 - 4 x^2 + 30 x = 0

Factor x from the left hand side:

x (5 x^3 + 5 x^2 - 4 x + 30) = 0

Split into two equations:

x = 0 or 5 x^3 + 5 x^2 - 4 x + 30 = 0

Eliminate the quadratic term by substituting y = x + 1/3:

x = 0 or 30 - 4 (y - 1/3) + 5 (y - 1/3)^2 + 5 (y - 1/3)^3 = 0

Expand out terms of the left hand side:

x = 0 or 5 y^3 - (17 y)/3 + 856/27 = 0

Divide both sides by 5:

x = 0 or y^3 - (17 y)/15 + 856/135 = 0

Change coordinates by substituting y = z + λ/z, where λ is a constant value that will be determined later:

x = 0 or 856/135 - 17/15 (z + λ/z) + (z + λ/z)^3 = 0

Multiply both sides by z^3 and collect in terms of z:

x = 0 or z^6 + z^4 (3 λ - 17/15) + (856 z^3)/135 + z^2 (3 λ^2 - (17 λ)/15) + λ^3 = 0

Substitute λ = 17/45 and then u = z^3, yielding a quadratic equation in the variable u:

x = 0 or u^2 + (856 u)/135 + 4913/91125 = 0

Find the positive solution to the quadratic equation:

x = 0 or u = 1/675 (9 sqrt(56235) - 2140)

Substitute back for u = z^3:

x = 0 or z^3 = 1/675 (9 sqrt(56235) - 2140)

Taking cube roots gives (9 sqrt(56235) - 2140)^(1/3)/(3 5^(2/3)) times the third roots of unity:

x = 0 or z = (9 sqrt(56235) - 2140)^(1/3)/(3 5^(2/3)) or z = -((-1)^(1/3) (9 sqrt(56235) - 2140)^(1/3))/(3 5^(2/3)) or z = ((-1)^(2/3) (9 sqrt(56235) - 2140)^(1/3))/(3 5^(2/3))

Substitute each value of z into y = z + 17/(45 z):

x = 0 or y = (9 sqrt(56235) - 2140)^(1/3)/(3 5^(2/3)) - (17 (-1)^(2/3))/(3 (5 (2140 - 9 sqrt(56235)))^(1/3)) or y = 17/3 ((-1)/(5 (2140 - 9 sqrt(56235))))^(1/3) - ((-1)^(1/3) (9 sqrt(56235) - 2140)^(1/3))/(3 5^(2/3)) or y = ((-1)^(2/3) (9 sqrt(56235) - 2140)^(1/3))/(3 5^(2/3)) - 17/(3 (5 (2140 - 9 sqrt(56235)))^(1/3))

Bring each solution to a common denominator and simplify:

x = 0 or y = ((-5)^(1/3) (2140 - 9 sqrt(56235))^(2/3) - 17 (-5)^(2/3))/(15 (2140 - 9 sqrt(56235))^(1/3)) or y = 1/15 (17 5^(2/3) ((-1)/(2140 - 9 sqrt(56235)))^(1/3) - (-5)^(1/3) (9 sqrt(56235) - 2140)^(1/3)) or y = -(2140 - 9 sqrt(56235))^(1/3)/(3 5^(2/3)) - 17/(3 (5 (2140 - 9 sqrt(56235)))^(1/3))

Substitute back for x = y - 1/3:

x = 0 or x = 1/15 (2140 - 9 sqrt(56235))^(-1/3) ((-5)^(1/3) (2140 - 9 sqrt(56235))^(2/3) - 17 (-5)^(2/3)) - 1/3 or x = 1/15 (17 5^(2/3) (-1/(2140 - 9 sqrt(56235)))^(1/3) - (-5)^(1/3) (9 sqrt(56235) - 2140)^(1/3)) - 1/3 or x = -1/3 - 1/3 5^(-2/3) (2140 - 9 sqrt(56235))^(1/3) - 17/3 (5 (2140 - 9 sqrt(56235)))^(-1/3)

5 (2140 - 9 sqrt(56235)) = 10700 - 45 sqrt(56235):

x = 0 or x = ((-5)^(1/3) (2140 - 9 sqrt(56235))^(2/3) - 17 (-5)^(2/3))/(15 (2140 - 9 sqrt(56235))^(1/3)) - 1/3 or x = 1/15 (17 5^(2/3) (-1/(2140 - 9 sqrt(56235)))^(1/3) - (-5)^(1/3) (9 sqrt(56235) - 2140)^(1/3)) - 1/3 or x = -1/3 - (2140 - 9 sqrt(56235))^(1/3)/(3 5^(2/3)) - 17/(3 (10700 - 45 sqrt(56235))^(1/3))

6/x^2 + (2 x - 8)/(x + 5) ⇒ 6/0^2 + (2 0 - 8)/(5 + 0) = ∞^~

2/x - 3 ⇒ 2/0 - 3 = ∞^~:

So this solution is incorrect

6/x^2 + (2 x - 8)/(x + 5) ≈ -3.83766

2/x - 3 ≈ -3.83766:

So this solution is correct

6/x^2 + (2 x - 8)/(x + 5) ≈ -2.44783 + 1.13439 i

2/x - 3 ≈ -2.44783 + 1.13439 i:

So this solution is correct

6/x^2 + (2 x - 8)/(x + 5) ≈ -2.44783 - 1.13439 i

2/x - 3 ≈ -2.44783 - 1.13439 i:

So this solution is correct

The solutions are:

Answer:  x = ((-5)^(1/3) (2140 - 9 sqrt(56235))^(2/3) - 17 (-5)^(2/3))/(15 (2140 - 9 sqrt(56235))^(1/3)) - 1/3 or x = 1/15 (17 5^(2/3) (-1/(2140 - 9 sqrt(56235)))^(1/3) - (-5)^(1/3) (9 sqrt(56235) - 2140)^(1/3)) - 1/3 or x = -1/3 - 17/(3 (10700 - 45 sqrt(56235))^(1/3)) - (2140 - 9 sqrt(56235))^(1/3)/(3 5^(2/3))

You might be interested in
A manufacturer finds that the revenue generated by selling x units of a certain commodity is given by the function R(x) = 60x −
Hitman42 [59]
To find the x value of the max of
f(x)=ax^2+bx+c
when a is negative (if a is positive, we find the minimum)
we do
-b/2a is the x value
to find the y value, we just sub that x value back into the function

so

R(x)=-0.2x^2+60x+0
-b/2a=-60/(2*0.2)=-60/-0.4=150
x value is 150
make 150 units

sub back to find revenue
R(150)=-0.2(150)^2+60(150)
R(150)=-0.2(22500)+9000
R(150)=-4500+9000
R(150)=4500

max revenue is achieved when 150 units are produced yeilding $4500 in revenue
6 0
3 years ago
Find the midpoint of the segment with the given endpoints ​(-​5,-9​) and ​(​-9,-3​)
meriva

Answer:

(-7,-6)

Step-by-step explanation:

x =  \frac{ -5 - 9}{2}  =   - 7 \\  \\ y =  \frac{  - 9 - 3}{2}  =  - 6 \\

7 0
3 years ago
If there are 35 total votes and 5% of people voted for one thing, how many people would be that 5%?
hram777 [196]

Answer:

2

Step-by-step explanation:

5% = 0.05

0.05 * 35 = 1.75

So, roughly 2 people voted for it.

3 0
3 years ago
Read 2 more answers
PLEASE HELP!<br><br> What additional information is needed to prove that the triangles are similar?
Iteru [2.4K]
Area and Perimeter that my guess
5 0
3 years ago
Read 2 more answers
A standard number cube is rolled once, what is the probability that the upturned face is three or less?
kow [346]

Answer:

1/2

Step-by-step explanation:

3 or less is half the numbers on the cube.

3/6 simplifies to 1/2

7 0
4 years ago
Other questions:
  • What is the extracts volume of the largest cone that can fit into a cube with edges of 10 inches
    8·1 answer
  • Find the volume of this sphere.<br> Round to the nearest tenth.<br> 16 ft<br> [ ? ] ft3
    10·1 answer
  • According to a milk carton, 2% milk contains 70 % less fat than whole milk. The nutrition label on the other side of the carton
    15·1 answer
  • How many sig figs does 5 280 feet have ?
    7·2 answers
  • Monet began heating a solution with a starting temperature of 67°F. The temperature increased by 3° per minute.
    11·1 answer
  • Given m∠B = 62, m∠C = 54 and line AD bisects ∠BAC, find m∠ADB
    15·1 answer
  • Find the missing side, x, rounded to the<br> nearest whole number.
    14·1 answer
  • (4c+3d) - (6c-6d) - (3c-5d) <br> Simplify please &lt;3
    10·1 answer
  • Can someone please help me?
    12·2 answers
  • The French army stayed behind in Egypt—and so did the scholars. In late August, shortly after Napoleon's departure, a large, hea
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!