1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miss Akunina [59]
3 years ago
8

Solve for x 6/x^2+2x-15 +7/x+5 =2/x-3

Mathematics
1 answer:
timama [110]3 years ago
4 0

Answer:

x = ((-5)^(1/3) (2140 - 9 sqrt(56235))^(2/3) - 17 (-5)^(2/3))/(15 (2140 - 9 sqrt(56235))^(1/3)) - 1/3 or x = 1/15 (17 5^(2/3) (-1/(2140 - 9 sqrt(56235)))^(1/3) - (-5)^(1/3) (9 sqrt(56235) - 2140)^(1/3)) - 1/3 or x = -1/3 - 17/(3 (10700 - 45 sqrt(56235))^(1/3)) - (2140 - 9 sqrt(56235))^(1/3)/(3 5^(2/3))

Step-by-step explanation:

Solve for x:

6/x^2 + (2 x - 8)/(x + 5) = 2/x - 3

Bring 6/x^2 + (2 x - 8)/(x + 5) together using the common denominator x^2 (x + 5). Bring 2/x - 3 together using the common denominator x:

(2 (x^3 - 4 x^2 + 3 x + 15))/(x^2 (x + 5)) = (2 - 3 x)/x

Cross multiply:

2 x (x^3 - 4 x^2 + 3 x + 15) = x^2 (2 - 3 x) (x + 5)

Expand out terms of the left hand side:

2 x^4 - 8 x^3 + 6 x^2 + 30 x = x^2 (2 - 3 x) (x + 5)

Expand out terms of the right hand side:

2 x^4 - 8 x^3 + 6 x^2 + 30 x = -3 x^4 - 13 x^3 + 10 x^2

Subtract -3 x^4 - 13 x^3 + 10 x^2 from both sides:

5 x^4 + 5 x^3 - 4 x^2 + 30 x = 0

Factor x from the left hand side:

x (5 x^3 + 5 x^2 - 4 x + 30) = 0

Split into two equations:

x = 0 or 5 x^3 + 5 x^2 - 4 x + 30 = 0

Eliminate the quadratic term by substituting y = x + 1/3:

x = 0 or 30 - 4 (y - 1/3) + 5 (y - 1/3)^2 + 5 (y - 1/3)^3 = 0

Expand out terms of the left hand side:

x = 0 or 5 y^3 - (17 y)/3 + 856/27 = 0

Divide both sides by 5:

x = 0 or y^3 - (17 y)/15 + 856/135 = 0

Change coordinates by substituting y = z + λ/z, where λ is a constant value that will be determined later:

x = 0 or 856/135 - 17/15 (z + λ/z) + (z + λ/z)^3 = 0

Multiply both sides by z^3 and collect in terms of z:

x = 0 or z^6 + z^4 (3 λ - 17/15) + (856 z^3)/135 + z^2 (3 λ^2 - (17 λ)/15) + λ^3 = 0

Substitute λ = 17/45 and then u = z^3, yielding a quadratic equation in the variable u:

x = 0 or u^2 + (856 u)/135 + 4913/91125 = 0

Find the positive solution to the quadratic equation:

x = 0 or u = 1/675 (9 sqrt(56235) - 2140)

Substitute back for u = z^3:

x = 0 or z^3 = 1/675 (9 sqrt(56235) - 2140)

Taking cube roots gives (9 sqrt(56235) - 2140)^(1/3)/(3 5^(2/3)) times the third roots of unity:

x = 0 or z = (9 sqrt(56235) - 2140)^(1/3)/(3 5^(2/3)) or z = -((-1)^(1/3) (9 sqrt(56235) - 2140)^(1/3))/(3 5^(2/3)) or z = ((-1)^(2/3) (9 sqrt(56235) - 2140)^(1/3))/(3 5^(2/3))

Substitute each value of z into y = z + 17/(45 z):

x = 0 or y = (9 sqrt(56235) - 2140)^(1/3)/(3 5^(2/3)) - (17 (-1)^(2/3))/(3 (5 (2140 - 9 sqrt(56235)))^(1/3)) or y = 17/3 ((-1)/(5 (2140 - 9 sqrt(56235))))^(1/3) - ((-1)^(1/3) (9 sqrt(56235) - 2140)^(1/3))/(3 5^(2/3)) or y = ((-1)^(2/3) (9 sqrt(56235) - 2140)^(1/3))/(3 5^(2/3)) - 17/(3 (5 (2140 - 9 sqrt(56235)))^(1/3))

Bring each solution to a common denominator and simplify:

x = 0 or y = ((-5)^(1/3) (2140 - 9 sqrt(56235))^(2/3) - 17 (-5)^(2/3))/(15 (2140 - 9 sqrt(56235))^(1/3)) or y = 1/15 (17 5^(2/3) ((-1)/(2140 - 9 sqrt(56235)))^(1/3) - (-5)^(1/3) (9 sqrt(56235) - 2140)^(1/3)) or y = -(2140 - 9 sqrt(56235))^(1/3)/(3 5^(2/3)) - 17/(3 (5 (2140 - 9 sqrt(56235)))^(1/3))

Substitute back for x = y - 1/3:

x = 0 or x = 1/15 (2140 - 9 sqrt(56235))^(-1/3) ((-5)^(1/3) (2140 - 9 sqrt(56235))^(2/3) - 17 (-5)^(2/3)) - 1/3 or x = 1/15 (17 5^(2/3) (-1/(2140 - 9 sqrt(56235)))^(1/3) - (-5)^(1/3) (9 sqrt(56235) - 2140)^(1/3)) - 1/3 or x = -1/3 - 1/3 5^(-2/3) (2140 - 9 sqrt(56235))^(1/3) - 17/3 (5 (2140 - 9 sqrt(56235)))^(-1/3)

5 (2140 - 9 sqrt(56235)) = 10700 - 45 sqrt(56235):

x = 0 or x = ((-5)^(1/3) (2140 - 9 sqrt(56235))^(2/3) - 17 (-5)^(2/3))/(15 (2140 - 9 sqrt(56235))^(1/3)) - 1/3 or x = 1/15 (17 5^(2/3) (-1/(2140 - 9 sqrt(56235)))^(1/3) - (-5)^(1/3) (9 sqrt(56235) - 2140)^(1/3)) - 1/3 or x = -1/3 - (2140 - 9 sqrt(56235))^(1/3)/(3 5^(2/3)) - 17/(3 (10700 - 45 sqrt(56235))^(1/3))

6/x^2 + (2 x - 8)/(x + 5) ⇒ 6/0^2 + (2 0 - 8)/(5 + 0) = ∞^~

2/x - 3 ⇒ 2/0 - 3 = ∞^~:

So this solution is incorrect

6/x^2 + (2 x - 8)/(x + 5) ≈ -3.83766

2/x - 3 ≈ -3.83766:

So this solution is correct

6/x^2 + (2 x - 8)/(x + 5) ≈ -2.44783 + 1.13439 i

2/x - 3 ≈ -2.44783 + 1.13439 i:

So this solution is correct

6/x^2 + (2 x - 8)/(x + 5) ≈ -2.44783 - 1.13439 i

2/x - 3 ≈ -2.44783 - 1.13439 i:

So this solution is correct

The solutions are:

Answer:  x = ((-5)^(1/3) (2140 - 9 sqrt(56235))^(2/3) - 17 (-5)^(2/3))/(15 (2140 - 9 sqrt(56235))^(1/3)) - 1/3 or x = 1/15 (17 5^(2/3) (-1/(2140 - 9 sqrt(56235)))^(1/3) - (-5)^(1/3) (9 sqrt(56235) - 2140)^(1/3)) - 1/3 or x = -1/3 - 17/(3 (10700 - 45 sqrt(56235))^(1/3)) - (2140 - 9 sqrt(56235))^(1/3)/(3 5^(2/3))

You might be interested in
**Need to get this all done**<br><br> Evaluate functions from their graph<br><br> g(3)=??
sesenic [268]

Answer:

4

Step-by-step explanation:

g(x) is the graph. g(3) is where the graph has a value of 3 for x.

5 0
3 years ago
A, b and c stand for three different numbers
creativ13 [48]

To find the mean, you add up the numbers and divide by
how many numbers there are.

So if the mean of   'A' and 'B' is 40, then   A + B = 80 .
And if the mean of 'B' and 'C' is 35 then    B + C = 70.
==========================================
You said that     (A + B) + C = 100 .
 
From something else that you said, I noticed that      A + B = 80 .

So I can write        (80)    + C  =  100

Subtract 80 from each side:  C = 20
==========================================
I also noticed, from what you said, that    B + C = 70 .

So I can write                  B + 20 = 70

Subtract 20 from each side:    B  =  50
==========================================
Now I know that  C = 20  and  B = 50.

Finally, you said that           A + B + C = 100 ,

So I can write                   A + 50 + 20 = 100

Combine like terms on the left:  A + 70 = 100

Subtract  70  from each side:      A      =  30
==========================================

           <em>  A = 30</em>
<em>             B = 50</em>
<em>             C = 20</em>


5 0
4 years ago
Jen is building a fence around her rectangular yard.
pogonyaev

Answer:

$375

Step-by-step explanation:

9 + 8 = 17

17 + 20 = 37

37 x 4.25 = 375

(I think I’m sorry I’m not good at math)

8 0
3 years ago
Please help me I need this one last question then I can turn in the assignment!!
creativ13 [48]

Answer:

I think with both plans it costs $45 for 3 hours of tutoring.

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Graph the rational function f(x)=(3x-1)/(x-5)
Alenkasestr [34]
Use symbolab it helped me a lot and good luck!
6 0
3 years ago
Other questions:
  • What is the midpoint of a segment whose endpoint are (-3,-3) and (-13,-13)
    12·1 answer
  • 2³⁰+2³⁰+2³⁰+2³⁰+2³⁰ =?
    9·2 answers
  • What is the equation of the line that passes through (1, 3) and (-2, -3)?
    9·1 answer
  • Find the domain and range of the relation: (-8,8),(-8,7),(-8,6),(-8,5). Then determine whether the relation is a function.
    15·1 answer
  • Tom has $10 that he wants to use to buy pens and pencils. However, he does not want to buy more pens than pencils. A pen costs $
    8·1 answer
  • Lisa is collecting data by interviewing people on the streets. She
    7·1 answer
  • In which one of the above figures is AB=AC
    9·1 answer
  • Which statements are true? Select all that apply.
    7·2 answers
  • Jada has read 3/4 of a book. She has read 60 pages so far. How many pages are in the whole book?
    6·2 answers
  • Kevin has 17 trading cards Billy has t more trading cards then Kevin chose the expression that shows how many trading ingredient
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!