<span>A perpendicular bisector of a line segment is a line segment perpendicular to and passing through the midpoint of (left figure). The perpendicular bisector
of a line segment can be constructed using a compass by drawing circles
centered at and with radius and connecting their two intersections.
Hope i helped
</span>
Answer: -80
Step-by-step explanation:
Answer:
Step-by-step explanation:
since AD is a median it implies that triangle ABC is bisected to two equal right angled triangle which are ADB and ADC.
FE is parrallel to BC and cuts AB at F and AC at E shows that there are two similar triangles formed which are AFE and ABC.
Recall that ADC is a right angled triangle, ED bisects a right angled triangle the the ADE =
.
Now, Let FD bisect angle ADB,
then ADF =
too.
Since AFX is similar to Triangle ABD and that Triangle AEX is similar to Triangle ACD, then EDX is similar to FDX
FDE = ADF + ADE = 
Answer:
I don't know what the options are, but to solve t/8 = 2, you have to multiply by 8.
Hope this helps :)
A because that is where they cross