Step-by-step explanation:
first in time : original. 2a : of, relating to, or being a prime number — compare relatively prime. b : having no polynomial factors other than itself and no monomial factors other than 1 a prime polynomial.
<h2>D. If subjects knew they were receiving an active treatment, researchers would not have known if any improvement was due to the new medication or to the expectation of <u>feeling </u>better. If the researchers knew which subjects received which treatments, they might have treated one group of subjects differently from the other group.</h2><h2 />
For your question... the answer would be D
Answer: C. The size of a business is ordinal-scaled because it has values that can be used as an order or rank of a categorical variable.
Step-by-step explanation: Ordinal variables are simply categorical in nature just like nominal variables, however, the difference exists in the fact that ordinal labels posses an ordered rank or level unlike nominal variables. Though the extent or width of the difference between these labels cannot be ascertained. In the scenario above, size of businesses are labeled qualitatively with labels such as : small, medium and large. This labels depicts and follow a certain order with small being the least, then medium, then large. Telling us large businesses are superior in size to small and medium and medium is superior to large. Though the extent of the difference cannot be accurately ascertained.
Answer:
a² + b² = 68
a3 + b3 = 520
Step-by-step explanation:
Given :
a + b = 10 (1)
ab = 16 (2)
A. Find a² + b²
(a + b)² = a² + 2ab + b² (3)
Substitutite the values of (1) and (2) into (3)
(10)² = a² + 2(16) + b²
100 = a² + 32 + b²
Subtract 32 from both sides
100 - 32 = a² + b²
a² + b² = 68
B. a^3 + b^3
(a + b)^3 = a^3 + b^3 + 3ab(a + b)
(10)^3 = a^3 + b^3 + 3*16(10)
1000 = a^3 + b^3 + 480
a^3 + b^3 = 1000 - 480
a3 + b3 = 520
Answer:
![15 \sqrt[3]{2}](https://tex.z-dn.net/?f=15%20%5Csqrt%5B3%5D%7B2%7D%20)
Step-by-step explanation:
![{(27 \times 250)}^{ \frac{1}{3} } = {(27 \times 125 \times 2)}^{ \frac{1}{3} } \\ = {27}^{ \frac{1}{3} } \times {125}^{ \frac{1}{3} } \times {2}^{ \frac{1}{3} } \\ = \sqrt[ 3]{27} \times \sqrt[3]{125} \times \sqrt[3]{2} \\ = \sqrt[3]{ {3}^{3} } \times \sqrt[3]{ {5}^{3} } \times \sqrt[3]{2} \\ = 3 \times 5 \times \sqrt[3]{2} \\ = 15 \sqrt[3]{2}](https://tex.z-dn.net/?f=%20%7B%2827%20%5Ctimes%20250%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%3D%20%20%7B%2827%20%5Ctimes%20125%20%5Ctimes%202%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%7B27%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5Ctimes%20%20%7B125%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5Ctimes%20%20%7B2%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B%203%5D%7B27%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B125%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B3%5D%7B%20%7B3%7D%5E%7B3%7D%20%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B%20%7B5%7D%5E%7B3%7D%20%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%203%20%5Ctimes%205%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%2015%20%5Csqrt%5B3%5D%7B2%7D%20)