1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ValentinkaMS [17]
3 years ago
14

How do I solve this ?

Mathematics
1 answer:
sergey [27]3 years ago
7 0
Hope this helped with ur problem

You might be interested in
How many different ways can you arrange five people shoulder to shoulder in a line
Liono4ka [1.6K]
I think the answer is 25
3 0
3 years ago
<img src="https://tex.z-dn.net/?f=%20%20%5Csf%20%5Chuge%7B%20question%20%5Chookleftarrow%7D" id="TexFormula1" title=" \sf \huge
BabaBlast [244]

\underline{\bf{Given \:equation:-}}

\\ \sf{:}\dashrightarrow ax^2+by+c=0

\sf Let\:roots\;of\:the\: equation\:be\:\alpha\:and\beta.

\sf We\:know,

\boxed{\sf sum\:of\:roots=\alpha+\beta=\dfrac{-b}{a}}

\boxed{\sf Product\:of\:roots=\alpha\beta=\dfrac{c}{a}}

\underline{\large{\bf Identities\:used:-}}

\boxed{\sf (a+b)^2=a^2+2ab+b^2}

\boxed{\sf (√a)^2=a}

\boxed{\sf \sqrt{a}\sqrt{b}=\sqrt{ab}}

\boxed{\sf \sqrt{\sqrt{a}}=a}

\underline{\bf Final\: Solution:-}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}

\bull\sf Apply\: Squares

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2= (\sqrt{\alpha})^2+2\sqrt{\alpha}\sqrt{\beta}+(\sqrt{\beta})^2

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2 \alpha+\beta+2\sqrt{\alpha\beta}

\bull\sf Put\:values

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2=\dfrac{-b}{a}+2\sqrt{\dfrac{c}{a}}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\sqrt{\dfrac{-b}{a}+2\sqrt{\dfrac{c}{a}}}

\bull\sf Simplify

\\ \sf{:}\dashrightarrow \underline{\boxed{\bf {\sqrt{\boldsymbol{\alpha}}+\sqrt{\boldsymbol{\beta}}=\sqrt{\dfrac{-b}{a}}+\sqrt{2}\dfrac{c}{a}}}}

\underline{\bf More\: simplification:-}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\dfrac{\sqrt{-b}}{\sqrt{a}}+\dfrac{c\sqrt{2}}{a}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\dfrac{\sqrt{a}\sqrt{-b}+c\sqrt{2}}{a}

\underline{\Large{\bf Simplified\: Answer:-}}

\\ \sf{:}\dashrightarrow\underline{\boxed{\bf{ \sqrt{\boldsymbol{\alpha}}+\sqrt{\boldsymbol{\beta}}=\dfrac{\sqrt{-ab}+c\sqrt{2}}{a}}}}

5 0
2 years ago
Read 2 more answers
Which symbol makes the statement true? 125.32 ____ 125.093<br><br> &lt;<br> &gt;<br> =<br> ≥
Alexandra [31]
Hello : 
125.32  > 125.093 .. because : 3 <span>> 0</span>
4 0
3 years ago
Read 2 more answers
Solve for x. Assume that segments that appear to be tangent are tangent. Round your final answer to the nearest tenth, if necess
Butoxors [25]

Answer:

x= 16.6

Step-by-step explanation:

The circle is unnecessary. You can just use Pythag Theorem

so

9^2+14^2= c^2

81 + 196 = 277

square root 277

16.64

round to the nearest tenth...

16.6

6 0
2 years ago
The perimeters of similar triangles are in the same ratio as the corresponding sides
wariber [46]

Answer:

Always

Step-by-step explanation:

Suppose you have triangle ABC with side lengths a, b, c. Suppose that is similar to triangle DEF with side lengths d, e, f.

Now, let k be the ratio of corresponding sides ...

  k = d/a

Because the same factor applies to all sides, we also have ...

  k = e/b = f/c

That is, if we multiply by the denominators of each of these fractions, we get ...

  • d = a·k
  • e =b·k
  • f = c·k

The perimeter of ΔABC is ...

   perimeter(ABC) = a + b + c

The perimeter of ΔDEF is ...

  perimeter(DEF) = d + e + f = a·k + b·k + c·k

  perimeter(DEF) = k(a + b + c) = k·perimeter(ABC)

  k = perimeter(DEF)/perimeter(ABC)

That is, the perimeters are in the same ratio as corresponding sides.

3 0
2 years ago
Other questions:
  • Polynomial Functions help
    8·1 answer
  • John has 8/9 of a gallon of apple cider vinegar. If it takes 1/7 of a gallon of vinegar to make a batch of collard greens, how m
    9·1 answer
  • What is the expanded form to write the prime factorization of 630
    5·1 answer
  • When the park opened for the day, four people were in attendance. Every hour, the number of people tripled from the previous hou
    11·1 answer
  • –t + 9t − 12t − –16t − 18t = –6
    11·1 answer
  • 20. Solve for x when 18x = 2/3 Provide your answer as a fraction. please do not do website​
    14·1 answer
  • PLZ ANSWER ASAP
    7·2 answers
  • Select all statements that are true about the linear equation.
    13·1 answer
  • Heeeeeyyyyy someone can aswer plz? Thx
    5·1 answer
  • HELP IM STRUGGLING REAL BAD WITH THSI
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!