Answer:
x = 90 - 2α
Step-by-step explanation:
Solution:-
- Consider the right angled triangle " ABD ". The sum of angles of an triangle is always "180°".
                        < BAD > + < ADB > + < ABD > = 180°
                        < ABD > = 180 - 90° - α
                         < ABD > = 90° - α  
- Then we look at the figure for the triangle "ABE". Where " E " is the midpoint and intersection point of two diagonals " AC and BD ".
- We name the foot of the perpendicular bisector as " F ":  " BF " would be the perpendicular bisector. The angle < BAE > is equal to < ABD >.
                     < ABD > = < BAE >  = 90° - α   ... ( Isosceles triangle " BEA " ) 
Where, sides ( BE = AE ).
- Use the law of sum of angles in a triangle and consider the triangle " BFA " as follows:
                      < ABF> + < BFA > + < BAF > = 180°
                      < ABF > = 180 - (90° - α) - 90° 
                      < ABF > = α  
Where,       < BAF > = < BAE >
- The angle < ABD > = < ABE > is comprised of two angles namely, < ABF > and < FBE >  = x.
                         < ABD > = < ABE > = < ABF > + x
                          90° - α = α + x
                          x = 90 - 2α   ... Answer