Answer:
The speed is 74.0 miles per hour and the angle is 65.1° north-east
Step-by-step explanation:
We resolve the distance moved by the wind and plane into horizontal and vertical components. The direction moved horizontally by the plane is 178sin7.1 = 22 miles.
Since the wind is moving south east, it is at 45 south of east or a bearing of 135.
Since the wind speed is 30 mph and it takes 2 hours to complete the trip, the horizontal distance moved by the wind is vtcos135 = 30 × 2cos45 = 42.43 miles
Also, the vertical displacement moved by the wind is vtsin135 = -30 × 2 sin45 = -42.43 miles
The displacement moved vertically by the plane is 178cos7.1 = 176.64 miles
The total horizontal displacement of the plane is 22 miles + 42.43 miles = 62.43 miles
The total vertical displacement of the plane is 176.64 miles - 42.43 miles = 134.21 miles
The resultant displacement is thus d = √(62.43² + 134.21²) = 148.02 miles
The direction of this displacement is thus
Ф = tan⁻¹(total vertical displacement/total horizontal displacement)
= tan⁻¹(134.21/62.43)
= tan⁻¹(2.1498)
= 65.05°
= 65.1° to the nearest tenth degree.
The speed is thus v = distance/ time = 148.02 miles/ 2 hours = 74.01 mph ≅ 74 mph. Since the direction of the displacement is the direction of the velocity, the velocity is thus 74 miles per hour at 65.1° north-east.
So the speed is 74.0 miles per hour and the angle is 65.1° north-east